63 resultados para Transducer Excitation
Resumo:
In cardiac and skeletal muscle, eugenol (μM range) blocks excitation-contraction coupling. In skeletal muscle, however, larger doses of eugenol (mM range) induce calcium release from the sarcoplasmic reticulum. The effects of eugenol are therefore dependent on its concentration. In this study, we evaluated the effects of eugenol on the contractility of isolated, quiescent atrial trabeculae from male Wistar rats (250-300 g; n=131) and measured atrial ATP content. Eugenol (1, 3, 5, 7, and 10 mM) increased resting tension in a dose-dependent manner. Ryanodine [100 µM; a specific ryanodine receptor (RyR) blocker] and procaine (30 mM; a nonspecific RyR blocker) did not block the increased resting tension induced by eugenol regardless of whether extracellular calcium was present. The myosin-specific inhibitor 2,3-butanedione monoxime (BDM), however, reversed the increase in resting tension induced by eugenol. In Triton-skinned atrial trabeculae, in which all membranes were solubilized, eugenol did not change resting tension, maximum force produced, or the force vs pCa relationship (pCa=-log [Ca2+]). Given that eugenol reduced ATP concentration, the increase in resting tension observed in this study may have resulted from cooperative activation of cardiac thin filaments by strongly attached cross-bridges (rigor state).
Resumo:
Erythropoietin (EPO) has been well characterized as a renal glycoprotein hormone regulating red blood cell production by inhibiting apoptosis of erythrocyte progenitors in hematopoietic tissues. EPO exerts regulatory effects in cardiac and skeletal muscles. Duchenne muscular dystrophy is a lethal degenerative disorder of skeletal and cardiac muscle. In this study, we tested the possible therapeutic beneficial effect of recombinant EPO (rhEPO) in dystrophic muscles in mdx mice. Total strength was measured using a force transducer coupled to a computer. Gene expression for myostatin, transforming growth factor-β1 (TGF-β1), and tumor necrosis factor-α (TNF-α) was determined by quantitative real time polymerase chain reaction. Myostatin expression was significantly decreased in quadriceps from mdx mice treated with rhEPO (rhEPO=0.60±0.11, control=1.07±0.11). On the other hand, rhEPO had no significant effect on the expression of TGF-β1 (rhEPO=0.95±0.14, control=1.05±0.16) and TNF-α (rhEPO=0.73±0.20, control=1.01±0.09). These results may help to clarify some of the direct actions of EPO on skeletal muscle.
Resumo:
β-Citronellol is an alcoholic monoterpene found in essential oils such Cymbopogon citratus (a plant with antihypertensive properties). β-Citronellol can act against pathogenic microorganisms that affect airways and, in virtue of the popular use of β-citronellol-enriched essential oils in aromatherapy, we assessed its pharmacologic effects on the contractility of rat trachea. Contractions of isolated tracheal rings were recorded isometrically through a force transducer connected to a data-acquisition device. β-Citronellol relaxed sustained contractions induced by acetylcholine or high extracellular potassium, but half-maximal inhibitory concentrations (IC50) for K+-elicited stimuli were smaller than those for cholinergic contractions. It also inhibited contractions induced by electrical field stimulation or sodium orthovanadate with pharmacologic potency equivalent to that seen against acetylcholine-induced contractions. When contractions were evoked by selective recruitment of Ca2+ from the extracellular medium, β-citronellol preferentially inhibited contractions that involved voltage-operated (but not receptor-operated) pathways. β-Citronellol (but not verapamil) inhibited contractions induced by restoration of external Ca2+ levels after depleting internal Ca2+ stores with the concomitant presence of thapsigargin and recurrent challenge with acetylcholine. Treatment of tracheal rings with L-NAME, indomethacin or tetraethylammonium did not change the relaxing effects of β-citronellol. Inhibition of transient receptor potential vanilloid subtype 1 (TRPV1) or transient receptor potential ankyrin 1 (TRPA1) receptors with selective antagonists caused no change in the effects of β-citronellol. In conclusion, β-citronellol exerted inhibitory effects on rat tracheal rings, with predominant effects on contractions that recruit Ca2+ inflow towards the cytosol by voltage-gated pathways, whereas it appears less active against contractions elicited by receptor-operated Ca2+ channels.