101 resultados para Thermo-inactivation
Resumo:
The seedling production stage is the key to achieve uniformity in tree breeding stage. This study evaluated "bocaiúva" (Acrocomia aculeata) seedling formation, with pre-germinated seeds in different substrates and protected environments, in the University of Mato Grosso do Sul State, Aquidauana, MS. As substrates, we used 100% cattle manure (M), 100% cassava branches (CB), 100% vermiculite (V), 50% cattle manure + 50% cassava branches, 50 % cattle manure + 50% vermiculite, 50% cassava branches + 50% vermiculite and ⅓ cattle manure + ⅓ cassava branches + ⅓ vermiculite. These substrates were tested in a greenhouse covered with 150 µm low density polyethylene (LDPE) film under thermo-reflective screen with 50% shading under film; black screen with 50% shading on the sides; black monofilament screen with 50% shading set on roof and sides; and aluminized thermo- reflective screen with 50% shading set on roof and sides. The completely randomized experimental design with 5 replications of 5 plants each was adopted. Initially, data were submitted to analysis of substrate individual variance in each growing environment, then performing the waste mean square evaluation and their environment joint analysis for comparison. The best growing environment is the thermo-reflective screen compared to LDPE greenhouse and black screen set. All substrates containing manure are recommended for bocaiúva seedlings formation. The pure cassava branch is not indicated for seedling, even using chemical fertilizer.
Resumo:
ABSTRACT Seedling quality is crucial to obtain vigorous plants in the field. This study aims to evaluate the emergence and development of soursop seedlings in different substrates in protected environments. The experiment was conducted at the Mato Grosso do Sul State University and carried out using five protected environments: greenhouse, greenhouse with thermo-reflective screen, nursery with monofilament screen, nursery with thermo-reflective screen, and nursery with palm thatch. The substrates (S) consisted of cattle manure (M), humus (H), cassava branches (C), and vermiculite (V) as in the following ratios: S1 = H + V (1:3), S2 = H + V (1:1), S3 = H + V (3:1), S4 = H + C (1:3), S5 = H + C (1:1), S6 = H + C (3:1), S7 = M + V (1:3), S8 = M + V (1:1), S9 = M + V (3:1), S10 = M + C (1:3), S11 = M + C (1:1), S12 = M + C (3:1), S13 = H + M + V (1:1:1), S14 = H + M + C (1:1:1), and S15 = H + M + V + C (1:1:1:1). For the statistical analysis, each of those environments was considered as an experiment in which was used the completely randomized design; subsequently, it was performed a combined analysis of them. In summary, the greenhouse with thermo-reflective screen and combined substrates with “M + V” promote greater development of the seedlings. High concentrations of “V” or “C” cause no beneficial effect on soursop seedlings.
Resumo:
ABSTRACT The quality of seedling is critical to obtain vigorous plants in the field. The present study aimed to assess biomasses and biometric relations of soursop seedlings. We used different substrates in protected environments. The experiment was performed at the Universidade Estadual do Mato Grosso do Sul (UFMS) (State University of Mato Grosso do Sul). Five farming environments were developed in greenhouses: one covered with low-density polyethylene film (LDPE), another with with polyethylene and heat-reflective cloth under film under 50% shading in aluminized color, monofilament cloth under 50% shading in black, thermo-reflective cloth under 50% shading in aluminized color, and an environment covered with bacuri coconut straw. Substrates were made of manure, humus, cassava branches and vermiculite at different proportions. Each of them varying from 25%, 33.3%, 50% and 75% in mixture combination. Each environment was considered an experiment. A completely randomized design was adopted and later a joint analysis of them. Agricultural greenhouse covered with LDPE and thermo-reflective cloths under 50% of shading, proportionated seedlings with greater biomass. Substrates containing manure are the most suitable for soursop seedlings. High percentages of earthworm humus produce low quality soursop seedlings. Soursop seedlings had a Dickson’s quality index around 0.335. The greenhouse covered only with LDPE film did not produce high quality seedlings.
Resumo:
Numerical simulation of machining processes can be traced back to the early seventies when finite element models for continuous chip formation were proposed. The advent of fast computers and development of new techniques to model large plastic deformations have favoured machining simulation. Relevant aspects of finite element simulation of machining processes are discussed in this paper, such as solution methods, material models, thermo-mechanical coupling, friction models, chip separation and breakage strategies and meshing/re-meshing strategies.
Resumo:
The incidence of TP53 point mutations and loss of heterozygosity (LOH) of chromosome 17 in colorectal tumors was determined in a group of Brazilian patients. We screened DNA samples from tumors and distal normal mucosa of 39 patients with colorectal cancer, for TP53 mutations by PCR-SSCP (single-strand conformation polymorphism) analysis. Chromosome 17 LOH was investigated using six PCR-based polymorphic markers and one VNTR probe. TP53 mutations were demonstrated in 15/39 of the cases. Mutations were distributed among all exons examined (five to eight), the majority of them being G/C to A/T transitions. LOH of chromosome 17p and 17q was detected in 70 and 46% of the tumors, respectively. There was a significant association between TP53 mutations and LOH in chromosome 17p (P = 0.0035) and 17q (P = 0.03). Although no correlation was observed between TP53 genetic alterations and clinical/ pathological characteristics, the association of TP53 mutations with loss of both chromosome 17 arms may indicate that TP53 inactivation provokes an unstable phenotype in tumor cells in colorectal tumors.
Resumo:
A new metalloendopeptidase was purified to apparent homogeneity from a homogenate of normal human brain using successive steps of chromatography on DEAE-Trisacryl, hydroxylapatite and Sephacryl S-200. The purified enzyme cleaved the Gly33-Leu34 bond of the 25-35 neurotoxic sequence of the Alzheimer ß-amyloid 1-40 peptide producing soluble fragments without neurotoxic effects. This enzyme activity was only inhibited by divalent cation chelators such as EDTA, EGTA and o-phenanthroline (1 mM) and was insensitive to phosphoramidon and captopril (1 µM concentration), specific inhibitors of neutral endopeptidase (EC 3.4.24.11) and angiotensin-converting enzyme (EC 3.4.15.1), respectively. The high affinity of this human brain endopeptidase for ß-amyloid 1-40 peptide (Km = 5 µM) suggests that it may play a physiological role in the degradation of this substance produced by normal cellular metabolism. It may also be hypothesized that the abnormal accumulation of the amyloid ß-protein in Alzheimer's disease may be initiated by a defect or an inactivation of this enzyme.
Resumo:
The mutants of Saccharomyces cerevisiae assigned to complementation group G199 are deficient in mitochondrial respiration and lack a functional cytochrome oxidase complex. Recombinant plasmids capable of restoring respiration were cloned by transformation of mutants of this group with a yeast genomic library. Sequencing indicated that a 2.1-kb subclone encompasses the very end (last 11 amino acids) of the PET111 gene, the COX7 gene and a new gene (YMR255W) of unknown function that potentially codes for a polypeptide of 188 amino acids (about 21.5 kDa) without significant homology to any known protein. We have shown that the respiratory defect corresponding to group G199 is complemented by plasmids carrying only the COX7 gene. The gene YMR255W was inactivated by one-step gene replacement and the disrupted strain was viable and unaffected in its ability to grow in a variety of different test media such as minimal or complete media using eight distinct carbon sources at three pH values and temperatures. Inactivation of this gene also did not affect mating or sporulation
Resumo:
Large volumes of plasma can be fractionated by the method of Cohn at low cost. However, liquid chromatography is superior in terms of the quality of the product obtained. In order to combine the advantages of each method, we developed an integrated method for the production of human albumin and immunoglobulin G (IgG). The cryoprecipitate was first removed from plasma for the production of factor VIII and the supernatant of the cryoprecipitate was fractionated by the method of Cohn. The first precipitate, containing fractions (F)-I + II + III, was used for the production of IgG by the chromatographic method (see Tanaka K et al. (1998) Brazilian Journal of Medical and Biological Research, 31: 1375-1381). The supernatant of F-I + II + III was submitted to a second precipitation and F-IV was obtained and discarded. Albumin was obtained from the supernatant of the precipitate F-IV by liquid chromatography, ion-exchange on DEAE-Sepharose FF, filtration through Sephacryl S-200 HR and introduction of heat treatment for fatty acid precipitation. Viral inactivation was performed by pasteurization at 60ºC for 10 h. The albumin product obtained by the proposed procedure was more than 99% pure for the 15 lots of albumin produced, with a mean yield of 25.0 ± 0.5 g/l plasma, containing 99.0 to 99.3% monomer, 0.7 to 1.0% dimers, and no polymers. Prekallikrein activator levels were <=5 IU/ml. This product satisfies the requirements of the 1997 Pharmacopée Européenne.
Resumo:
This paper reviews the use of confocal microscopy as it pertains to the identification of G-protein coupled receptors and the study of their dynamic properties in cell cultures and in mammalian brain following their tagging with specific fluorescent ligands. Principles that should guide the choice of suitable ligands and fluorophores are discussed. Examples are provided from the work carried out in the authors' laboratory using custom synthetized fluoresceinylated or BODIPY-tagged bioactive peptides. The results show that confocal microscopic detection of specifically bound fluorescent ligands permits high resolution appraisal of neuropeptide receptor distribution both in cell culture and in brain sections. Within the framework of time course experiments, it also allows for a dynamic assessment of the internalization and subsequent intracellular trafficking of bound fluorescent molecules. Thus, it was found that neurotensin, somatostatin and mu- and delta-selective opioid peptides are internalized in a receptor-dependent fashion and according to receptor-specific patterns into their target cells. In the case of neurotensin, this internalization process was found to be clathrin-mediated, to proceed through classical endosomal pathways and, in neurons, to result in a mobilization of newly formed endosomes from neural processes to nerve cell bodies and from the periphery of cell bodies towards the perinuclear zone. These mechanisms are likely to play an important role for ligand inactivation, receptor regulation and perhaps also transmembrane signaling.
Resumo:
A new metalloendopeptidase was purified to apparent homogeneity from a homogenate of normal human liver using successive steps of chromatography on DEAE-cellulose, hydroxyapatite and Sephacryl S-200. The purified enzyme hydrolyzed the Pro7-Phe8 bond of bradykinin and the Ser25-Tyr26 bond of atrial natriuretic peptide. No cleavage was produced in other peptide hormones such as vasopressin, oxytocin or Met- and Leu-enkephalin. This enzyme activity was inhibited by 1 mM divalent cation chelators such as EDTA, EGTA and o-phenanthroline and was insensitive to 1 µM phosphoramidon and captopril, specific inhibitors of neutral endopeptidase (EC 3.4.24.11) and angiotensin-converting enzyme (EC 3.4.15.1), respectively. With Mr 85 kDa, the enzyme exhibits optimal activity at pH 7.5. The high affinity of this endopeptidase for bradykinin (Km = 10 µM) and for atrial natriuretic peptide (Km = 5 µM) suggests that it may play a physiological role in the inactivation of these circulating hypotensive peptide hormones.
Resumo:
TGF-ß1 regulates both cellular growth and phenotypic plasticity important for maintaining a growth advantage and increased invasiveness in progressively malignant cells. Recent studies indicate that TGF-ß-1 stimulates the conversion of epitheliod to fibroblastoid phenotype which presumably leads to the inactivation of growth-inhibitory effects by TGF-ß1 (Portella et al. (1998) Cell Growth and Differentiation, 9: 393-404). Therefore, the investigation of TGF-ß1 signaling that leads to altered growth and migration may provide novel targets for the prevention of increased cell growth and invasion. Although much attention has been paid to TGF-ß1 responses in epithelial cells, the above studies suggest that examination of signal transduction pathways in fibroblasts are important as well. Data from our laboratory are consistent with the concept that TGF-ß1 can act as a regulatory switch in density-dependent C3H 10T1/2 fibroblasts capable of either promoting or delaying G1 traverse. The regulation of this switch is proposed to occur prior to pRb phosphorylation, namely prior to activation of cyclin-dependent kinases. The current study is concerned with the evaluation of a key cyclin (cyclin D1) which activates cdk4 and p27KIP1 which in turn inhibit cdk2 in the proliferative responses of epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) and their modulation by TGF-ß1. Although the molecular events that lead to elevation of cyclin D1 are not completely understood, it appears likely that activation of p42/p44MAPK kinases is involved in its transcriptional regulation. TGF-ß1 delayed EGF- or PDGF-induced cyclin D1 expression and blocked the induction of active p42/p44MAPK. The mechanism by which TGF-ß1 induces a block in p42/p44MAPK activation is being examined and the possibility that TGF-ß1 regulates phosphatase activity is being tested.
Resumo:
Preference for specific protein substrates together with differential sensitivity to activators and inhibitors has allowed classification of serine/threonine protein phosphatases (PPs) into four major types designated types 1, 2A, 2B and 2C (PP1, PP2A, PP2B and PP2C, respectively). Comparison of sequences within their catalytic domains has indicated that PP1, PP2A and PP2B are members of the same gene family named PPP. On the other hand, the type 2C enzyme does not share sequence homology with the PPP members and thus represents another gene family, known as PPM. In this report we briefly summarize some of our studies about the role of serine/threonine phosphatases in growth and differentiation of three different eukaryotic models: Blastocladiella emersonii, Neurospora crassa and Dictyostelium discoideum. Our observations suggest that PP2C is the major phosphatase responsible for dephosphorylation of amidotransferase, an enzyme that controls cell wall synthesis during Blastocladiella emersonii zoospore germination. We also report the existence of a novel acid- and thermo-stable protein purified from Neurospora crassa mycelia, which specifically inhibits the PP1 activity of this fungus and mammals. Finally, we comment on our recent results demonstrating that Dictyostelium discoideum expresses a gene that codes for PP1, although this activity has never been demonstrated biochemically in this organism.
Resumo:
The genetic alterations observed in head and neck cancer are mainly due to oncogene activation (gain of function mutations) and tumor suppressor gene inactivation (loss of function mutations), leading to deregulation of cell proliferation and death. These genetic alterations include gene amplification and overexpression of oncogenes such as myc, erbB-2, EGFR and cyclinD1 and mutations, deletions and hypermethylation leading to p16 and TP53 tumor suppressor gene inactivation. In addition, loss of heterozygosity in several chromosomal regions is frequently observed, suggesting that other tumor suppressor genes not yet identified could be involved in the tumorigenic process of head and neck cancers. The exact temporal sequence of the genetic alterations during head and neck squamous cell carcinoma (HNSCC) development and progression has not yet been defined and their diagnostic or prognostic significance is controversial. Advances in the understanding of the molecular basis of head and neck cancer should help in the identification of new markers that could be used for the diagnosis, prognosis and treatment of the disease.
Resumo:
In order to obtain intravenous immunoglobulin G (iv IgG) of high quality from F-I+II+III or F-II+III pastes prepared by the Cohn method, we developed a chromatography process using ion exchange gels, Q-Sepharose FF and CM-Sepharose FF, and Sephacryl S-300 gel filtration. Viral inactivation was performed by incubating the preparation with pepsin at pH 4.0 at 35oC for 18 h. The characteristics of 28 batches produced by us were: yield 4.3 ± 0.2 g/l plasma, i.e., a recovery of 39.1 ± 1.8%; IgG subclasses distribution: IgG1 = 58.4%, IgG2 = 34.8%, IgG3 = 4.5% and IgG4 = 2.3%; IgG size distribution was 98.4% monomers, 1.2% dimers and 0.4% polymers and protein aggregates; anticomplement activity was less than 0.5 CH50/mg IgG, and prekallikrein activator activity (PKA) was less than 5 IU/ml. These characteristics satisfied the requirements of the European Pharmacopoea edition, and the regulations of the Brazilian Health Ministry (M.S. Portaria No. 2, 30/10/1998).
Resumo:
A constitutive alkaline phosphatase was purified to apparent homogeneity as determined by polyacrylamide gel electrophoresis from mycelia of the wild strain 74A of the mold Neurospora crassa, after growth on acetate and in the presence of saturating amounts of inorganic phosphate (Pi) for 72 h at 30ºC. The molecular mass was 58 kDa and 56 kDa as determined by exclusion chromatography and SDS-PAGE, respectively. This monomeric enzyme shows an apparent optimum pH ranging from 9.5 to 10.5 and Michaelis kinetics for the hydrolysis of p-nitrophenyl phosphate (the Km and Hill coefficient values were 0.35 mM and 1.01, respectively), alpha-naphthyl phosphate (the Km and Hill coefficient values were 0.44 mM and 0.97, respectively), ß-glycerol phosphate (the Km and Hill coefficient values were 2.46 mM and 1.01, respectively) and L-histidinol phosphate (the Km and Hill coefficient values were 0.47 mM and 0.94, respectively) at pH 8.9. The purified enzyme is activated by Mg2+, Zn2+ and Tris-HCl buffer, and is inhibited by Be2+, histidine and EDTA. Also, 0.3 M Tris-HCl buffer protected the purified enzyme against heat inactivation at 70ºC(half-life of 19.0 min, k = 0.036 min-1) as compared to 0.3 M CHES (half-life of 2.3 min, k = 0.392 min-1) in the same experiment.