97 resultados para Thermal bowing
Resumo:
The study was conducted in a facility for pigs during the nursery and finishing in the town of 'Montadas', in the semiarid of the state of Paraiba, Brazil, in the rainy and dry season, aiming to evaluate the concentration of oxygen, methane, carbon monoxide and ammonia, and the bioclimatic indexes: ambient temperature (AT), relative humidity (RH) and the index of black globe temperature and humidity (IBGTH). These indexes differed significantly (P>0.05) between the periods and times. The AT in the rainy season was in the thermal comfort zone(TCZ) in most of the times in the nursery; for the finishing phase, thermal discomfort occurred; during the dry season, there was thermal comfort in the nursery phase; in the finishing phase the thermal discomfort occurred at all times. In the rainy season, the IBGTH was in TCZ; in the dry season, it was above the TCZ. The RH in the rainy period was in the TCZ; in the dry season, in most of the times, below the range of the TCZ. The concentration of gases showed no differences (P > 0.05) between periods and between the times, and the carbon monoxide, hydrogen sulfide and methane were below 1.0 ppm, and the ammonia showed a mean of 5.2 ppm. None of the analyzed gases exceeded the limits established by Brazilian and international standards for animals and workers.
Resumo:
Most studies on measures of transpiration of plants, especially woody fruit, relies on methods of heat supply in the trunk. This study aimed to calibrate the Thermal Dissipation Probe Method (TDP) to estimate the transpiration, study the effects of natural thermal gradients and determine the relation between outside diameter and area of xylem in 'Valencia' orange young plants. TDP were installed in 40 orange plants of 15 months old, planted in boxes of 500 L, in a greenhouse. It was tested the correction of the natural thermal differences (DTN) for the estimation based on two unheated probes. The area of the conductive section was related to the outside diameter of the stem by means of polynomial regression. The equation for estimation of sap flow was calibrated having as standard lysimeter measures of a representative plant. The angular coefficient of the equation for estimating sap flow was adjusted by minimizing the absolute deviation between the sap flow and daily transpiration measured by lysimeter. Based on these results, it was concluded that the method of TDP, adjusting the original calibration and correction of the DTN, was effective in transpiration assessment.
Resumo:
The research proposes a methodology for assessing broiler breeder response to changes in rearing thermal environment. The continuous video recording of a flock analyzed may offer compelling evidences of thermal comfort, as well as other indications of welfare. An algorithm for classifying specific broiler breeder behavior was developed. Videos were recorded over three boxes where 30 breeders were reared. The boxes were mounted inside an environmental chamber were ambient temperature varied from cold to hot. Digital images were processed based on the number of pixels, according to their light intensity variation and binary contrast allowing a sequence of behaviors related to welfare. The system used the default of x, y coordinates, where x represents the horizontal distance from the top left of the work area to the point P, and y is the vertical distance. The video images were observed, and a grid was developed for identifying the area the birds stayed and the time they spent at that place. The sequence was analyzed frame by frame confronting the data with specific adopted thermal neutral rearing standards. The grid mask overlapped the real bird image. The resulting image allows the visualization of clusters, as birds in flock behave in certain patterns. An algorithm indicating the breeder response to thermal environment was developed.
Resumo:
In most of Brazilian pig farms, the environmental acclimatization systems run manually. For night and early morning periods, this practice isn't appropriate, because, in general, there are not employees available to run these manual systems. This research aimed to compare the bioclimatic profile of two differently constructed facilities to the external environment, considering the period from 6 p.m. to 6 a.m. during the spring, in order to show that night and early morning temperatures do not coincides with growing pig's thermoneutral zone. For this reason, acclimatization must be also carried out at these periods. It was analyzed the dry bulb temperature, relative air humidity, temperature-humidity index (THI) and enthalpy data of the sheds and external areas. Under the studied conditions, it was possible to conclude that the constructively appropriate shed appeared to be less influenced by the external environment, allowing better thermal control for growing pigs. Further research must be conducted to verify if automatic cooling systems is needed during night and early morning.
Resumo:
The research was developed to evaluate the use of different types of roofing materials regularly used in poultry houses. Measurements of thermal comfort were made through the use of techniques such as the Black Globe and Humidity Index (BGHI), the Thermal Heat Load (THL) and Enthalpy (H). Conducted in the State University of Goiás, during the months of April and May, 2011, the experiment was composed of five different treatments: AC - Asbestos cement tiles, BA -Bamboo tiles, BAP - Bamboo tiles painted in white, FB -Vegetable fiber tiles and bitumen, FBP -Vegetable fiber tiles and bitumen painted in white. The experiment consisted in 15 repetitions, which were considered the different days of measurements taken. Throughout the studied period, the time of the day considered the least comfortable was the one observed at 2:00pm, and the coverage of vegetable fiber and bitumen showed the highest value of BGHI (84.1) when compared to other types of coverage, characterizing a situation of lower thermal comfort, and no difference was found for THL and H on treatments in the studied region.
Resumo:
Due to changes in genetics and nutrition, as well as in acclimatization of broiler chickens to the Brazilian climate, temperature values currently accepted as optimal may be outdated. The objective of this research was to update the environment temperatures that characterize the thermal comfort for broilers chickens from one to 21 days of age, under Brazilian production conditions. This research was conducted with 600 COBB birds, which were distributed in five growth chambers maintained at different temperatures during the first three weeks of age. During the experimental period, temperature values were progressively reduced, consisting in five treatments: T2724/21, T30/27/24, T33/30/27, T36/33/30 and T39/36/33. It was observed that the birds maintained in the T30(27-24) treatment presented better performance compared to other environment conditions. Based on the obtained regression models, the environment temperature values that provide greater weighing gain for the broiler chicken growth in the initial period were 31.3, 25.5 and 21.8 ºC, respectively for the first, second and third week of age.
Resumo:
In the first week of a chick life, broilers are very sensitive to different conditions outside their thermoneutral zone. Thus, the goal of this study was to evaluate the behaviors and productive responses of broilers subjected to conditions of thermal comfort or challenge at different intensities (27, 30, 33 and 36ºC) and durations (1, 2, 3 and 4 days starting on the second day of life). In the experiment, ten minutes of images from each hour of each treatment were analyzed to evaluate the key behaviors of the birds. Similar behavior at different dry-bulb air temperatures were identified by using Ward's method of cluster analysis. These behaviors were grouped by dendograms in which the similarity of these data was qualified. Feed intake, water intake and body mass of these animals were evaluated and used to support the observed behaviors. Thus, a similar huddling behavior was observed in the birds from the 2nd to the 5th day of life subjected to 27ºC and 30ºC, while at 30ºC and 33ºC the behavior of accessing feeders and drinkers was also similar. Chicks subjected to 33ºC presented the best performance, and at 30 and 36ºC showed intermediate development.
Resumo:
Brazil is a country of tropical climate, a fact that hinders the poultry production in the aspect of thermal comfort. Thus, we aimed to evaluate the thermal environment in commercial poultry houses with different covers during the months of December 2012 to May 2013, in the municipality of Rio Verde, Goiás. The experimental design was completely randomized in split plots with factorial arrangement of treatments 2x3, being two shed models (thermal and aluminum roof tiles) and three sections within each shed (initial, central and final) for 182 days, having the days as replicates. The thermal environment was assessed through thermal comfort indices: Temperature and Humidity Index, Black Globe Temperature and Humidity Index, Radiant Heat Load and Enthalpy. The data was analyzed by SISVAR 5.1., through the analysis of variance, the Scott Knott test used to compare the means, considering a significance level of 1%. The results showed a significant statistical difference between the sheds and the points assessed (P < 0.05). The thermal shed had the lowest values for the environmental variables (Dbt and Bgt) and thermal indices studied, but larger values for the RH compared to the shed with aluminum covering. The use of thermal covers minimizes the difference in temperature range throughout various times of the day, being at 14:00 o'clock the prominence time to others.
Resumo:
ABSTRACT The objective of this research was to evaluate the thermal efficiency of roofs used on individual shelters during milk-feeding stage of Girolando calves. The research was conducted at a farm located in a dry region of Pernambuco state, Brazil. The experimental design was completely randomized, with 27 Holstein × Gir dairy crossbred calves housed in shelters with three roofing materials (fibre cement tile, recycled tile, and thatched roofs). The recycled tiles and thatched roofs provided reductions of 18.7 and 14.6% in radiant thermal load, respectively. Regardless the roofing material, all animals increased their respiratory rate to maintain thermal equilibrium.
Resumo:
ABSTRACT Global warming increases the occurrence of events such as extreme heat waves. Research on thermal and air conditions affecting broiler-rearing environment are important to evaluate the animal welfare under extreme heat aiming mitigation measures. This study aimed at evaluating the effect of a simulated heat wave, in a climatic chamber, on the thermal and air environment of 42-day-old broilers. One hundred and sixty broilers were housed and reared for 42 days in a climatic chamber; the animals were divided into eight pens. Heat wave simulation was performed on the 42nd day, the period of great impact and data sampling. The analyzed variables were room and litter temperatures, relative humidity, concentrations of oxygen, carbon monoxide and ammonia at each pen. These variables were assessed each two hours, starting at 8 am, simulating a day heating up to 4 pm, when it is reached the maximum temperature. By the results, we concluded that increasing room temperatures promoted a proportional raise in litter temperatures, contributing to ammonia volatilization. In addition, oxygen concentrations decreased with increasing temperatures; and the carbon monoxide was only observed at temperatures above 27.0 °C, relative humidity higher than 88.4% and litter temperatures superior to 30.3 °C.
Resumo:
A numerical procedure for solving the nongray radiative transfer equation (RTE) in two-dimensional cylindrical participating media is presented. Nongray effects are treated by using a narrow-band approach. Radiative emission from CO, CO2, H2O, CH4 and soot is considered. The solution procedure is applied to study radiative heat transfer in a premixed CH4-O2, laminar, flame. Temperature, soot and IR-active species molar fraction distributions are allowed to vary in the axial direction of the flame. From the obtained results it is possible to quantify the radiative loss in the flame, as well as the importance of soot radiation as compared to gaseous radiation. Since the solution procedure is developed for a two-dimensional cylindrical geometry, it can be applied to other combustion systems such as furnaces, internal combustion engines, liquid and solid propellant combustion.
Resumo:
Thermal louvers, using movable or rotating shutters over a radiating surface, have gained a wide acceptance as highly efficient devices for controlling the temperature of a spacecraft. This paper presents a detailed analysis of the performance of a rectangular thermal louver with movable blades. The radiative capacity of the louver, determined by its effective emittance, is calculated for different values of the blades opening angle. Experimental results obtained with a prototype of a spacecraft thermal louver show good agreement with the theoretical values.
Resumo:
This work was carried out with the objective of evaluating the growth and development of honey weed (Leonurus sibiricus) based on days or thermal units (growing degree days). Thus, two independent trials were developed to quantify the phenological development and total dry mass accumulation in increasing or decreasing photoperiod conditions. Considering only one growing season, honey weed phenological development was perfectly fit to day scale or growing degree days, but with no equivalence between seasons, with the plants developing faster at increasing photoperiods, and flowering 100 days after seeding. Even day-time scale or thermal units were not able to estimate general honey weed phenology during the different seasons of the year. In any growing condition, honey weed plants were able to accumulate a total dry mass of over 50 g per plant. Dry mass accumulation was adequately fit to the growing degree days, with highlights to a base temperature of 10 ºC. Therefore, a higher environmental influence on species phenology and a lower environmental influence on growth (dry mass) were observed, showing thereby that other variables, such as the photoperiod, may potentially complement the mathematical models.
Resumo:
Availability of basic information on weed biology is an essential tool for designing integrated management programs for agricultural systems. Thus, this study was carried out in order to calculate the base temperature (Tb) of southern sandbur (Cenchrus echinatus), as well as fit the initial growth and development of the species to accumulated thermal units (growing degree days - GDD). For that purpose, experimental populations were sown six times in summer/autumn conditions (decreasing photoperiod) and six times in winter/spring condition (increasing photoperiod). Southern sandbur phenological evaluations were carried out, on alternate days, and total dry matter was measured when plants reached the flowering stage. All the growth and development fits were performed based on thermal units by assessing five base temperatures, as well as the absence of it. Southern sandbur development was best fit with Tb = 12 ºC, with equation y = 0,0993x, where y is the scale of phenological stage and x is the GDD. On average, flowering was reached at 518 GDD. Southern sandbur phenology may be predicted by using mathematical models based on accumulated thermal units, adopting Tb = 12 ºC. However, other environmental variables may also interfere with species development, particularly photoperiod.
Resumo:
This work was carried out with the objective of evaluating growth and development of sourgrass (Digitaris insularis) based on days or thermal units (growing degree days - GDD). Two independent trials were developed aiming to quantify the species' phenological development and total dry matter accumulation in increasing or decreasing photoperiod conditions. Plants were grown in 4 L plastic pots, filled with commercial substrate, adequately fertilized. In each trial, nine growth evaluations were carried out, with three replicates. Phenological development of sourgrass was correctly fit to time scale in days or GDD, through linear equation of first degree. Sourgrass has slow initial growth, followed by exponential dry matter accumulation, in increasing photoperiod condition. Maximum total dry matter was 75 and 6 g per plant for increasing and decreasing photoperiod conditions, respectively. Thus, phenological development of sourgrass may be predicted by mathematical models based on days or GDD; however, it should be noted that other environmental variables interfere on the species' growth (mass accumulation), especially photoperiod.