78 resultados para Text Mining
Resumo:
The concentration and thermodesorption speciation of mercury in sediments from four different Iron Quadrangle sites impacted by gold mining activity were determined. The mercury content of some samples was considerably high (ranging from 0.04 to 1.1 µg g-1). Only Hg2+ was found and it was preferably distributed in the silt/clay fraction in all samples. Cluster analysis showed that mercury and manganese can be associated. The occurrence of cinnabar in this region as another mercury source was also discussed, corroborating earlier works showing the importance of natural mercury in the geochemical cycle of the metal in this region.
Resumo:
The gold and iron mining activities in the Velhas River yield considerable amounts of suspended solids as well as metals to the hydrological system of the region. The risks were assessed by sequential extraction procedures. They were carried out in sediment samples, aiming to evaluate the presence of Co, Cr, Cu, Ni, Zn and As. Although being at high levels in some parts of the river (e.g. As 527 mg g-1 and Cr 475 mg g-1) they are associated with the residual fraction. Mobility factors were also calculated and show that these species are enriched along the river, e.g. for As 0.02 at the spring and 0.33 at the high course of the river.
Resumo:
Acid drainage results from exposition of sulfides to the atmosphere. Arsenopyrite is a sulfide that releases arsenic (As) to the environment when oxidized. This work evaluated the As mobility in six sulfidic geomaterials from gold mining areas in Minas Gerais State, Brazil. Grained samples (<2 mm) were periodically leached with distilled water, during 70 days. Results suggested As sorption onto (hydr)oxides formed by oxidation of arsenopyrite. Low pH accelerated the acid generation, dissolving Fe oxihydroxides and releasing As. Presence of carbonates decreased oxidation rates and As release. On the other hand, lime added to a partially oxidized sample increased As mobilization.
Resumo:
The present work aimed to characterize an aluminum industry by-product in natura (L.A. nat) and after phosphate and thermal pretreatments; evaluate the adsorption/desorption capacity of Cd and Pb by this L.A. nat form and after the aforementioned pretreatments, comparing them with an in natura iron mining by-product (L.F. nat). The L.A. nat presented a high pH as well as a high Na concentration and also an oxide-rich mineralogy. Pretreatment of the by-product had no significant effect upon Cd and Pd adsorption/desorption. The L.A. nat performed better than the L.F. nat as an Cd and Pb adsorbent.
Resumo:
Copper toxicity in soil was evaluated using biomarkers of oxidative stress (catalase enzyme activity, superoxide dismutase and lipid peroxidation) in the earthworm Eisenia foetida. Agricultural topsoils from mining areas of the Aconcagua river basin were collected. Total copper concentrations were in the range of 94-959 mg kg-1, while the exchangeable copper concentrations were in the range of 46-2225 µg kg-1. Earthworms exposed to soil with exchangeable copper concentrations above 32 µg kg-1 showed an increase in catalase activity. Parameters of antioxidant activity were more sensitive than the weight change and thus can be used as appropriate biomarkers in Eisenia foetida.
Resumo:
This study aimed the use of coal mining waste as a new adsorbent for H3O+ and removal of Al (III), Fe (III) and Mn (II) from acid mine drainage. Data from kinetic and equilibrium of the adsorption of H3O+ followed the pseudo second-order and Langmuir isotherm models. The maximum adsorption capacity of H3O+ was 316 mmol kg-1. The adsorbent removed 100% of Al (III), 100% of Fe (III) and 89% of Mn (II), suggesting its use as an alternative for the treatment of acid mine drainage.
Resumo:
Two sampling points were chosen and forty samples were collected between January and December 2006 at Alto Sorocaba basin. The rainwater pH varied from 5.46 to 6.36 (Ibiúna) and 5.26 to 6.81 (Itupararanga), being Ca2+ the main ion responsible for controlling the rainwater pH. The ionic concentrations decreased in the following order: Ca2 +>Na+> Mg2+>K+ for cations and SO4(2-)>HCO3->NO 3->Cl- >PO4(3-) for anions. The annual atmospheric deposition appeared to be controlled mostly by following sources: mining activities and cement factories (Ca2+ and HCO3-), natural soil dust (Na+, Mg2+ and HCO3-), fossil fuel burning (SO4(2-)) and agriculture activities (K+, NO3- and PO4(3-)).
Resumo:
The symbiosis of plants with mycorrhizal fungi represents an alternative to be considered during the processes of revegetation and rehabilitation of arsenic-contaminated soil. The aim of this study was to evaluate under greenhouse conditions the effect of arsenic on the mycorrhizal association of two species of tropical fern (Thelypteris salzmannii and Dicranopteris flexuosa). T. salzmannii had higher rates of colonization and higher density of spores while D. flexuosa showed greater sensitivity to smaller concentrations of arsenic and association with mycorrhizal fungi. Our results indicate that screening and selection of mycorrhizal fungal isolates/species is possible and effective for phytoremediation of arsenic-contaminated soils.
Resumo:
Coal, natural gas and petroleum-based liquid fuels are still the most widely used energy sources in modern society. The current scenario contrasts with the foreseen shortage of petroleum that was spread out in the beginning of the XXI century, when the concept of "energy security" emerged as an urgent agenda to ensure a good balance between energy supply and demand. Much beyond protecting refineries and oil ducts from terrorist attacks, these issues soon developed to a portfolio of measures related to process sustainability, involving at least three fundamental dimensions: (a) the need for technological breakthroughs to improve energy production worldwide; (b) the improvement of energy efficiency in all sectors of modern society; and (c) the increase of the social perception that education is a key-word towards a better use of our energy resources. Together with these technological, economic or social issues, "energy security" is also strongly influenced by environmental issues involving greenhouse gas emissions, loss of biodiversity in environmentally sensitive areas, pollution and poor solid waste management. For these and other reasons, the implementation of more sustainable practices in our currently available industrial facilities and the search for alternative energy sources that could partly replace the fossil fuels became a major priority throughout the world. Regarding fossil fuels, the main technological bottlenecks are related to the exploitation of less accessible petroleum resources such as those in the pre-salt layer, ranging from the proper characterization of these deep-water oil reservoirs, the development of lighter and more efficient equipment for both exploration and exploitation, the optimization of the drilling techniques, the achievement of further improvements in production yields and the establishment of specialized training programs for the technical staff. The production of natural gas from shale is also emerging in several countries but its production in large scale has several problems ranging from the unavoidable environmental impact of shale mining as well as to the bad consequences of its large scale exploitation in the past. The large scale use of coal has similar environmental problems, which are aggravated by difficulties in its proper characterization. Also, the mitigation of harmful gases and particulate matter that are released as a result of combustion is still depending on the development of new gas cleaning technologies including more efficient catalysts to improve its emission profile. On the other hand, biofuels are still struggling to fulfill their role in reducing our high dependence on fossil fuels. Fatty acid alkyl esters (biodiesel) from vegetable oils and ethanol from cane sucrose and corn starch are mature technologies whose market share is partially limited by the availability of their raw materials. For this reason, there has been a great effort to develop "second-generation" technologies to produce methanol, ethanol, butanol, biodiesel, biogas (methane), bio-oils, syngas and synthetic fuels from lower grade renewable feedstocks such as lignocellulosic materials whose consumption would not interfere with the rather sensitive issues of food security. Advanced fermentation processes are envisaged as "third generation" technologies and these are primarily linked to the use of algae feedstocks as well as other organisms that could produce biofuels or simply provide microbial biomass for the processes listed above. Due to the complexity and cost of their production chain, "third generation" technologies usually aim at high value added biofuels such as biojet fuel, biohydrogen and hydrocarbons with a fuel performance similar to diesel or gasoline, situations in which the use of genetically modified organisms is usually required. In general, the main challenges in this field could be summarized as follows: (a) the need for prospecting alternative sources of biomass that are not linked to the food chain; (b) the intensive use of green chemistry principles in our current industrial activities; (c) the development of mature technologies for the production of second and third generation biofuels; (d) the development of safe bioprocesses that are based on environmentally benign microorganisms; (e) the scale-up of potential technologies to a suitable demonstration scale; and (f) the full understanding of the technological and environmental implications of the food vs. fuel debate. On the basis of these, the main objective of this article is to stimulate the discussion and help the decision making regarding "energy security" issues and their challenges for modern society, in such a way to encourage the participation of the Brazilian Chemistry community in the design of a road map for a safer, sustainable and prosper future for our nation.
Resumo:
The chemistry of natural products has been remarkably growing in the past few decades in Brazil. Aspects related to the isolation and identification of new natural products, as well as their biological activities, have been achieved in different laboratories working on this subject in the country. More recently, the introduction of new molecular biology tools has strongly influenced the research on natural products, mainly those produced by microorganisms, creating new possibilities to assess the chemical diversity of secondary metabolites. This paper describes some ideas on how the research on natural products can have a considerable input from molecular biology in the generation of chemical diversity. We also explore the role of microbial natural products in mediating interspecific interactions and their relevance to ecological studies. Examples of the generation of chemical diversity are highlighted by using genome mining, mutasynthesis, combinatorial biosynthesis, metagenomics, and synthetic biology, while some aspects of microbial ecology are also discussed. The idea to bring up this topic is linked to the remarkable development of molecular biology techniques to generate useful chemicals from different organisms. Here, we focus mainly on microorganisms, even though similar approaches have also been applied to the study of plants and other organisms. Investigations in the frontier of chemistry and biology require interactions between different areas, characterizing the interdisciplinarity of this research field. The necessity of a real integration of chemistry and biology is pivotal to finding correct answers to a number of biological phenomena. The use of molecular biology tools to generate chemical diversity and control biosynthetic pathways is largely explored in the production of important biologically active compounds. Finally, we briefly comment on the Brazilian organization of research in this area, the necessity of new strategies for the graduation programs, and the establishment of networks as a way of organization to overcome some of the problems faced in the area of natural products.
Resumo:
Polyketides and non-ribosomal peptides are natural products widely found in bacteria, fungi and plants. The biological activities associated with these metabolites have attracted special attention in biopharmaceutical studies. Polyketide synthases act similarly to fatty acids synthetases and the whole multi-enzymatic set coordinating precursor and extending unit selection and reduction levels during chain growth. Acting in a similarly orchestrated model, non-ribosomal peptide synthetases biosynthesize NRPs. PKSs-I and NRPSs enzymatic modules and domains are collinearly organized with the parent gene sequence. This arrangement allows the use of degenerated PCR primers to amplify targeted regions in the genes corresponding to specific enzymatic domains such as ketosynthases and acyltransferases in PKSs and adenilation domains in NRPSs. Careful analysis of these short regions allows the classifying of a set of organisms according to their potential to biosynthesize PKs and NRPs. In this work, the biosynthetic potential of a set of 13 endophytic actinobacteria from Citrus reticulata for producing PKs and NRP metabolites was evaluated. The biosynthetic profile was compared to antimicrobial activity. Based on the inhibition promoted, 4 strains were considered for cluster analysis. A PKS/NRPS phylogeny was generated in order to classify some of the representative sequences throughout comparison with homologous genes. Using this approach, a molecular fingerprint was generated to help guide future studies on the most promising strains.
Resumo:
Changes in the hydrological regime of the Lower São Francisco River, located in Northeastern Brazil have brought negative environmental impacts, jeopardizing the flora and fauna of a global biodiversity hotspot, due to implementation of hydroelectric power dams and surface water withdrawal for irrigation in public and private perimeters. Remnants of the riparian stratum associated to the riverbank destabilization in six fragments were studied by surveying trees, shrubs, herbs, and aquatic species. The calculation of the Factor of Safety (FS) was performed in order to understand the riverbank's stability related to soil texture and vegetation cover. An overall number of 51 botanic families distributed in 71 genera and 79 species were recorded, predominantly from the families Mimosaceae, Myrtaceae, and Fabaceae. The fragmented riparian vegetation is mostly covered by secondary species under a strong anthropogenic impact such as deforestation, mining and irrigation, with an advanced erosion process in the river margins. Strong species that withstand the waves present in the river flow are needed to reduce the constant landslides that are mainly responsible for the river sedimentation and loss of productive lands. A lack of preservation attitude among the local landholders was identified, and constitutes a continuing threat to the riparian ecosystem biodiversity.
Resumo:
Patches of seasonally dry tropical forests occur on limestone outcrops in Central Brazil surrounded by the dominant savanna vegetation. They contain valuable timber species but are threatened by farming and mining activities. The objective of this study was to describe canopy opening and light relations in two seasonally deciduous dry forests on slopes and limestone outcrops, in the Paranã valley at the northeastern region of the Goiás state, Brazil. The studied forests were in the Fazenda Sabonete in Iaciara-Go and Fazenda Forquilha in Guarani-GO. Woody plants were sampled in 25 (20 x 20 m) plots in each forest. In the Sabonete forest 40 species, 705 ind./ha-1 with a basal area of 15.78 m²/ha-1 were found, while in Forquilha there were 55 species, 956 ind./ha-1 with a basal area of 24.76 m²/ha-1. Using hemispherical photographic techniques, 25 black and white photographs were taken at each site, during the dry season, totaling 50 photographs. These were taken at the beginning of each vegetation-sampling plot. The photographs were scanned in grey tones and saved as 'Bitmap'. The canopy opening and leaf area index (LAI) were calculated using the software Winphot. The mean canopy opening was 54.0% (±9.36) for Fazenda Sabonete and 64.6% (±11.8) in Fazenda Forquilha, with both sites presenting significant differences in the opening estimates (P < 0.05). Their floristic richness and structure also differed with the more open canopy forest, Forquilha, being richer and denser, suggesting the need for further studies on species-environment relationships in these forests.
Resumo:
O objetivo deste trabalho foi analisar o comportamento espaçotemporal da precipitação pluvial no Estado do Rio Grande do Sul, entre os decênios de 1987-1996 e 1997-2006, por meio de técnicas de mineração de dados. As séries históricas foram adquiridas no sistema de informações hidrológicas Hidroweb. A metodologia utilizada teve como base o modelo CRISP-DM (Cross Industry Standard Process for Data Mining). Foram definidas áreas pluviometricamente homogêneas para os decênios de 1987-1996 e 1997-2006. Em seguida, pela sobreposição dos agrupamentos obtidos para os dois períodos, encontraram-se seis zonas comuns aos dois decênios (A a F). As alterações ocorridas foram avaliadas nas seguintes escalas temporais: anual, sazonal e mensalmente. Os resultados indicaram incrementos significativos (20 a 240 mm) na precipitação anual em todas as zonas, exceto na zona A. Na análise sazonal, as variações foram aleatórias, sendo que, na primavera, todas as zonas apresentaram incremento significativo (44 a 142 mm). Na análise mensal, destaca-se a redução ocorrida no mês de janeiro em todas as zonas, exceto na E. Nos demais meses, as variações foram aleatórias. Os resultados mostram que, entre os decênios, houve uma alteração no volume da precipitação pluvial em todas as escalas temporais analisadas.
Resumo:
Os objetivos deste trabalho foram quantificar o número de esporos e o número mais provável de propágulos infectivos de FMA em solos da mineradora Caraíba, verificando influências sazonais na dinâmica desses propágulos e determinando os efeitos da mineração sobre o potencial de infectividade micorrízica. Foram realizadas coletas de solo na estação seca (agosto/98) e na chuvosa (fevereiro/99), em seis sub áreas da mineradora de cobre: 1 - local onde é depositado o rejeito; 2 - arredores da área industrial; 3 - local onde são depositados restos de rocha com pouco minério; 4 - caatinga nativa, não impactada; 5 - interface entre a caatinga e o rejeito; 6 - local onde foi retirada a camada superficial do solo. Foram identificadas 32 espécies de plantas num raio de dois metros, a partir dos pontos de coleta de solo. Maior diversidade (21 espécies) foi encontrada na sub área 4 e menor (2 espécies) na sub área 3. As sub áreas 1, 3 e 5 apresentaram o menor número de esporos (< 1 por g de solo), possivelmente devido aos elevados valores de Cu e Fe e ao pH mais alcalino. Em geral a densidade dos esporos e o número de propágulos infectivos foram baixos (< 2 por g de solo). Não houve diferença significativa entre o número de esporos nas estações seca e chuvosa, a não ser para a sub área 6. Entretanto, houve variação entre as sub áreas, com diferenças significativas nas duas estações do ano.