439 resultados para Tesouraria líquida (TL)
Resumo:
Sulfasalazine is a prodrug used in the treatment of the Chron's disease and rheumatoid arthritis. Two analytical methods for analysis of sulfasalazine in oral suspension were validated using Spectrophotometric and HPLC. There is not any pharmacopoeic method to assay sulfasalazine in oral suspension. The methods are insurance and fast execution for the quality control. Both, suspension and tablets 500 mg (Azulfin®) had been analyzed by methods using UV/VIS and HPLC and the results were satisfactory.
Resumo:
This review considers some of the difficulties encountered with the analysis of basic solutes using reversed-phase chromatography, such as detrimental interaction with stationary phase silanol groups. Methods of overcoming these problems in reversed-phase separations, by judicious selection of the stationary phase and mobile phase conditions, are discussed. Developments to improve the chemical and thermal stability of stationary phases are also reviewed. It is shown that substantial progress has been made in the manufacturing of stationary phases, enabling their use over a wide variety of experimental conditions. In addition, general measures to significantly extend their lifespan are discussed.
Resumo:
Ascorbic acid has important nutritional characteristics such as high antioxidant potential, preventing diverse damage and diseases in the tissues and the process of aging. Different isomeric forms of the ascorbic acid can be found in nature and each one have different potential antioxidant and different activity pro-vitamin C. This work examined a method to detect and quantify the isomers L-ascorbic acid (LAA) and D-iso-ascorbic acid (DIAA) in jelly fruit. The method showed acceptable selectivity, linearity, repeatability and recovery. DIAA was not found in the analyzed samples, but LAA was found up to 605 mg in 100 g of sample.
Resumo:
Tibolone is a synthetic steroid used for prevention of bone loss and treatment of menopause symptoms. This article describes the development and validation of an analytical method to quantify tibolone in capsules using high performance liquid chromatography with UV detection. After chromatography conditions are established the validation parameters evaluated were specificity, linearity, precision, accuracy, detection and quantification limits and robustness. The method developed is effective to analyze tibolone in capsules, being able to be used in quality control laboratory routine.
Resumo:
A high performance liquid chromatographic-diode array detection method for the determination of busulfan in plasma was developed and validated. Sample preparation consisted of protein precipitation followed by derivatization with sodium diethyldithiocarbamate and liquid-liquid extraction with methyl-tert-butyl ether. Chromatograms were monitored at 277 nm. Separation was carried out on a Lichrospher RP 18 column (5 µm, 250 x 4 mm). The mobile phase consisted of water and acetonitrile (20:80, v/v). The method presented adequate specificity, linearity, precision and accuracy and allowed reliable determination of busulfan in clinical plasma samples, being applied to three patients submitted to bone marrow transplantation.
Resumo:
Anthocyanins extracted from picao, quaresmeira, petunia, flamboyant, purple ipe, lobeira, pata de vaca, jaboticaba, purple cabbage and jambul were evaluated as natural acid-base indicators. Anthocyanins in extracts were identified using HPLC/MS. Clear, rapid change in color at final-point titration was observed for extracts but only picao showed strong change in pH. Indirect determination of carbonate in limestone using a natural indicator was performed and results compared with phenolphthalein indicator and potentiometer titration. Optimal results were obtained with picao but other extracts showed good accuracy and precision.
Resumo:
This study optimized and validated the liquid-liquid extraction technique with partition at low temperature (LLE-PLT) for identification and quantification of four pesticides (chlorpyrifos, λ-cyhalothrin, permethrin, bifenthrin) in water samples. Analyses were performed by HPLC-UV. The technique was efficient for pesticide recovery with extraction exceeding 86%. Chromatographic response was linear for the four compounds in the 10-45 µg L-1 range, with correlation coefficients greater than 0.99. Limits of detection and quantitation were less than 3.5 µg L-1 and equal to 10 µg L-1, respectively. The proposed method was applied to 29 water samples from the Jaíba Project in northern Minas Gerais.
Resumo:
A multiresidue method using HPLC/DAD for the determination of fourteen pesticides in water based on SPE, using SDVB (styrene divynilbenzene copolymer) as adsorbent was validated. Recoveries from 61 to 120%, relative standard deviation between 2 and 15% and detection limits from 0.07 to 0.75 µg L-1 were obtained. It was applied to 66 surface water samples collected in a degraded area at the headwaters of São Lourenço river, Mato Grosso, Brazil. Eight pesticides were detected in concentrations ranging from 0.15 to 35.25 µg L-1. Considering ecotoxicological data, carbendazim and carbofuran may represent a risk to aquatic organisms. These results draw attention to the contamination of this vulnerable degraded area.
Resumo:
This is an overview of LC-MS techniques applied for macrolide determination in food, including sample preparation and method validation, as well as the policies adopted by international agencies regarding their presence in food. Techniques for the analysis of macrolides in food normally include solid phase or liquid-liquid extraction followed by HPLC. UHPLC presents advantages in running time, detectability and solvent consumption. Triple-quadrupoles are the most common analyzers in instruments used for the determination of contaminants in food, but time-of-flight and ion-trap spectrometers have been successfully applied for analyses focusing on the investigation of structural formula or the presence of degradation products.
Resumo:
This work describes three C8-stationary phases for high performance liquid chromatography based on silica metallized with ZrO2, TiO2 or Al2O3 layers, having poly(methyloctylsiloxane) immobilized onto their surfaces. The stationary phases were characterized using XRF, XAS, FTIR, SEM and elemental analysis to determine the physical characteristics of the oxide and polysiloxane layers formed on the surfaces and chromatographically to evaluate the separation parameters. The results show the changes on the silica surface and allowed proposing a structure for the oxide layer, being observed tetrahedral and octahedral structures, what is completely new in the literature. The formation of a homogeneous layer of metallic oxide (TiO2 and ZrO2) was observed on the silica. The C8-titanized and C8-aluminized stationary phases presented good chromatographic performances, with good values of asymmetry and efficiency. All stationary phase presented few loss of the polymeric layer after the HPLC, indicating that this layer is well attached on the metalized support.
Resumo:
Blooms of cyanobacteria represent a public health risk due to their cyanotoxins such as microcystins. Liquid chromatography techniques to separate and quantify microcystins invariably use acetonitrile as the organic component of the mobile phase. The price and availability of acetonitrile together with its elevated toxicity encourage the validation of acetonitrile-free methods of microcystin analysis. In this work, methanol was employed as the organic solvent of the mobile phase and the validation method was performed with different environmental water samples. The method showed limits of detection between 0.17 and 0.25 µg/L and of quantification between 0.55 and 0.82 µg/L for the microcystin variants: -RR, -YR, -LR, -LA.
Resumo:
Validation of a rapid method for the determination of ascorbic, citric, fumaric and tartaric acids in stored pulp fruit and its application as a quality parameter was performed. The validation parameters showed that for the four evaluated acids, the method presented low limits of detection (LOD) and quantification (LOQ), indicating good precision and accuracy, thus representing an important tool for quality assessment of stored fruit pulp. The results showed that the concentration of organic acids generally decreased with longer storage time in the fruit pulp under study. Amongst all the organic acids under investigation, ascorbic proved the least stable.
Resumo:
The aim of this work was to develop and validate an analytical method for the quantification of tioconazole in polymeric nanocapsule suspensions by high performance liquid chromatography with UV detection. The analysis was performed with a mobile phase composed of methanol:water (80:20) and 0.18% ammonium hydroxide; RP-18 column and UV detection at 219 nm. The method proved to be linear in the concentration range of 5-50 µg mL-1 (r = 0.9999), specific, precise (repeatability RSD = 1.42%, intermediate precision RSD = 1.17%), accurate (98 - 102%) and robust (RSD < 2.0%). In conclusion, a simple and rapid method was validated proving suitable for quantification of tioconazole in polymeric nanocapsules.
Resumo:
Carbamazepine, phenobarbital and phenytoin were determined in dried blood spots (DBS) by high performance liquid chromatography, after extraction of 8 mm DBS using a mixture of acetonitrile and methanol. Analytes were separated by reversed-phase chromatography, with a run time of 17 minutes. Intra-assay and inter-assay precisions were in the 5.3 to 8.4% and 3.3 to 5.2% ranges, respectively. Accuracy was in the 98.8 to 104.3% range. The method had sensitivity to detect all analytes at levels below minimum therapeutic concentrations. The analytes were stable at 4 ºC and room temperature for up to 12 days and at 45 ºC for 9 days. The method was applied to 14 paired clinical samples of blood serum and DBS.
Resumo:
The constant evolution of science and the growing demand for new technologies have led to new techniques in instrumentation that can improve detection, separation, resolution, and peak capacity. Comprehensive two-dimensional liquid chromatography (LC×LC) is presented as a powerful tool in complex sample analyses. During an analysis, a sample is subjected to two independent separation mechanisms that are combined, resulting in increased resolving power. For appropriate application of LC×LC, understanding the influence of parameters that require optimization is necessary. The main purpose of optimization is to predict the combination of stationary phases, separation conditions, and instrumental requirements to obtain the best separation performance. This review discusses theoretical, intrumental, and chemometric aspects of LC×LC and focuses on its applications in foods. It aims to provide a clear understanding of the aspects that can be used as strategies in the optimization of this analytical method.