120 resultados para T. gondii-host cell interaction
Resumo:
The intraerythrocytic malarial parasite is involved in an extremely intensive anabolic activity while it resides in its metabolically quiescent host cell. The necessary fast uptake of nutrients and the discharge of waste product, are guaranteed by parasite-induced alterations of the constitutive transporters of the host cell and the production of new parallel pathways. The membrane of the host cell thus becomes permeable to phospholipids, purine bases and nucleosides, small non-electrolytes, anions and cations. When the new pathways are quantitatively unimportant, classical inhibitors of native transporters can be used to inhibit parasite growth. Several compounds were found to effectively inhibit the new pathways and consequently, parasite growth. The pathways have also been used to introduce cytotoxic agents. The parasitophorous membrane consists of channels which are highly permeable to small solutes and display no ion selectivity. Transport of some cations and anions across the parasite membrane is rapid and insensitive to classical inhibitors, and in some cases it is mediated by specific antiporters which respond to their respective inhibitors. Macromolecules have been shown to reach the parasitophorous space through a duct contiguous with the host cell membrane, and subsequently to be endocytosed at the parasite membrane. The simultaneous presence of the parasitophorous membrane channels and the duct, however, is incompatible with experimental evidences. No specific inhibitors were found as yet that would efficiently inhibit transport through the channels or the duct.
Resumo:
The freshwater snail Biomphalaria glabrata is an intermediate host of the trematode Schistosoma mansoni. However, some strains of B. glabrata are resistant to successful infection by S. mansoni larvae. The present work examines the profile of organic acids present in S. mansoni-resistant and -susceptible strains of B. glabrata, in order to determine whether the type of organic acid present is related to susceptibility. The organic acids were extracted from the hemolymph of two susceptible B. glabrata strains (PR, Puerto Rico and Ba, Jacobina-Bahia from Brazil), and from the resistant strains 13-16-R1 and 10R2, using solid phase extraction procedures followed by high performance liquid chromatography. The organic acids obtained were analyzed and identified by comparison with known standards. Pyruvate, lactate, succinate, malate, fumarate, acetate, propionate, ß-hydroxybutyrate and acetoacetate were detected in all hemolymph samples. Under standard conditions, the concentration of each of these substances varied among the strains tested and appeared to be specific for each strain. An interesting variation was the low concentration of pyruvate in the hemolymph of PR-snails. Only the concentration of fumarate was consistently different (p£ 0.05) between resistant and susceptible strains
Resumo:
The ultrastructure of endogenous stages of Eimeria ninakohlyakimovae was observed in epithelial cells of cecum and colon crypts from a goat experimentally infected with 2.0 x 105 oocysts/kg. The secondary meronts developed above the nucleus of the host cell. The nucleus first divides and merozoites then form on the surface of multinucleated meronts. Free merozoites in the parasitophorous vacuole present a conoid, double membrane, one pair of rhoptries, micronemes, micropore, anterior and posterior polar ring, a nucleus with a nucleolus and peripheral chromatin. The microgamonts are located below the nucleus of the host cell and contain several nuclei at the periphery of the parasite. The microgametes consist of a body, a nucleus, three flagella and mitochondria. The macrogamonts develop below the nucleus of the host cell and have a large nucleus with a prominent nucleolus. The macrogametes contain a nucleus, wall-forming bodies of type I and type II. The young oocysts present a wall containing two layers and a sporont
Resumo:
Little is known about the molecular mechanisms underlying the release of merozoites from malaria infected erythrocytes. In this study membranous structures present in the culture medium at the time of merozoite release have been characterized. Biochemical and ultrastructural evidence indicate that membranous structures consist of the infected erythrocyte membrane, the parasitophorous vacuolar membrane and a residual body containing electron dense material. These are subcellular compartments expected in a structure that arises as a consequence of merozoite release from the infected cell. Ultrastructural studies show that a novel structure extends from the former parasite compartment to the surface membrane. Since these membrane modifications are detected only after merozoites have been released from the infected erythrocyte, it is proposed that they might play a role in the release of merozoites from the host cell
Resumo:
A study was carried out using macrophages cultured from the peritoneal exudate of dogs infected in vitro with three species of Leishmania: L. (L.) chagasi, L. (Viannia) braziliensis and L. (L.) amazonensis with the aim of investigating the growth kinetics and infectivity of these species in the host cell. Results were expressed as the percentage of macrophages infected measured at 24 hr intervals over six days in RPMI - 1640 culture medium at a temperature of 34-35oC. The findings open the possibility of using canine peritoneal cells as a model for the screenning of leishmanicide drugs and to study the pathogenesis of these species.
Resumo:
In the animal model of leishmaniasis caused by Leishmania (Leishmania) amazonensis there is a complex mechanism of the host-parasite interaction. The present study was performed to interfere with the inflammatory reaction to the parasites, through immune modulation. Female C5BL/6 isogenic mice were used, some of which were inoculated on the right ear and others on the right footpad with 3.10(6) stationary phase promastigotes of the MHOM/BR/PH8 strain of L. (L.) amazonensis, and were allocated in three groups: the first received pentoxifylline 8mg/kg every 12 h, since the first day; the second one received the same dose since the 40th day of infection and a control group that did not receive any treatment. All the ears excised were analyzed to determine the variation in weight between both ears and for histopathological analyses. A quantification of the parasites was done using the limiting dilution assay. A significant reduction of the number of parasites, was observed among the animals treated which had an accordingly significant reduction on the weight of the ears. Pentoxifylline reduced the macrophages propensity to vacuolation and induced a more effective destruction of the parasites by these cells. Moreover, the group that began the treatment later did not show the same effectiveness.
Resumo:
In this study, we compared the level of TNF-alpha secretion induced in monocytic THP-1 cells after phagocytosis of Mycobacterium leprae, the causative agent of leprosy, and M. bovis BCG, an attenuated strain used as a vaccine against leprosy and tuberculosis. The presence of M. leprae and BCG was observed in more than 80% of the cells after 24 h of exposure. However, BCG but not M. leprae was able to induce TNF-alpha secretion in these cells. Moreover, THP-1 cells treated simultaneously with BCG and M. leprae secreted lower levels of TNF-alpha compared to cells incubated with BCG alone. M. leprae was able, however, to induce TNF-alpha secretion both in blood-derived monocytes as well as in THP-1 cells pretreated with phorbol myristate acetate. The inclusion of streptomycin in our cultures, together with the fact that the use of both gamma-irradiated M. leprae and heat-killed BCG gave similar results, indicate that the differences observed were not due to differences in viability but in intrinsic properties between M. leprae and BCG. These data suggest that the capacity of M. leprae to induce TNF-alpha is dependent on the stage of cell maturation and emphasize the potential of this model to explore differences in the effects triggered by vaccine strain versus pathogenic species of mycobacteria on the host cell physiology and metabolism.
Resumo:
Eimeria carmelinoi n.sp., is described in the teiid lizard Kentropyx calcarata Spix, 1825 from north Brazil. Oocysts subspherical to spherical, averaging 21.25 x 20.15 µm. Oocyst wall smooth, colourless and devoid of striae or micropyle. No polar body or conspicuous oocystic residuum, but frequently a small number of fine granules in Brownian movement. Sporocysts, averaging 10.1 x 9 µm, are without a Stieda body. Endogenous stages characteristic of the genus: intra-cytoplasmic, within the epithelial cells of the ileum and above the host cell nucleus. A re-description is given of a parasite previously described as Eimeria cnemidophori, in the teiid lizard Cnemidophorus lemniscatus lemniscatus. A study of the endogenous stages in the ileum necessitates renaming this coccidian as Acroeimeria cnemidophori (Carini, 1941) nov.comb., and suggests that Acroeimeria pintoi Lainson & Paperna, 1999 in the teiid Ameiva ameiva is a synonym of A. cnemidophori. A further intestinal coccidian, Acroeimeria paraensis n.sp. is described in C. l. lemniscatus, frequently as a mixed infection with A. cnemidophori. Mature oocysts, averaging 24.4 x 21.8 µm, have a single-layered, smooth, colourless wall with no micropyle or striae. No polar body, but the frequent presence of a small number of fine granules exhibiting Brownian movements. Sporocysts 9 x 8, without a Stieda body. Endogenous stages epicytoplasmic, characteristic of the genus, in the upper ileum. The importance of a study of the endogenous stages of eimeriid coccidia is discussed.
Resumo:
It is described the histopathology of the infection of Tilapia rendalli (Osteichthyes, Perciformes, Cichlidae) and Hypostomus regani (Osteichthyes, Siluriformes, Loricariidae) by lasidium larvae of Anodontites trapesialis (Mollusca, Bivalvia, Mycetopodidae). The larvae were encysted within the epidermis of the host, being surrounded by a thin hyaline membrane, 3-6 µm thick, of parasite origin. A proliferative host cell reaction did not occur. The histopathology of the infection shows that the lesions induced by the parasites are minimal. However, the numerous small lesions produced by the release of the larvae may provide optimal conditions for the infection by opportunistic pathogens, namely fungus, which may eventually cause the death of the host.
Resumo:
In this study we have examined certain aspects of the process of cell invasion and parasitophorous vacuole escape by metacyclic trypomastigotes and extracellular amastigote forms of Trypanosoma cruzi (G strain). Using Vero (and HeLa) cells as targets, we detected differences in the kinetics of vacuole escape by the two forms. Alcalinization of intercellular pH influenced both invasion as well as the escape from the parasitophorous vacuole by metacyclic trypomastigotes, but not the escape kinetics of extracellular amastigotes. We used sialic acid mutants as target cells and observed that the deficiency of this molecule facilitated the escape of both infective forms. Hemolysin activity was only detected in extracellular amastigotes and neither form presented detectable transialidase activity. Invasion of extracellular amastigotes and trypomastigotes in Vero cells was affected in different ways by drugs that interfere with host cell Ca2+ mobilization. These results are in line with previous results that indicate that metacyclic trypomastigotes and extracellular amastigote forms utilize mechanisms with particular features to invade host cells and to escape from their parasitophorous vacuoles.
Resumo:
Three different haematozoan parasites are described in the blood of the teiid lizard Ameiva ameiva Linn. from North Brazil: one in the monocytes and the other two in erythrocytes. The leucocytic parasite is probably a species of Lainsonia Landau, 1973 (Lankesterellidae) as suggested by the presence of sporogonic stages in the internal organs, morphology of the blood forms (sporozoites), and their survival and accumulation in macrophages of the liver. One of the erythrocytic parasites produces encapsulated, stain-resistant forms in the peripheral blood, very similar to gametocytes of Hemolivia Petit et al., 1990. The other is morphologically very different and characteristically adheres to the host-cell nucleus. None of the parasites underwent development in the mosquitoes Culex quinquefasciatus and Aedes aegypti and their behaviour in other haematophagous hosts is under investigation. Mixed infections of the parasites commonly occur and this often creates difficulties in relating the tissue stages in the internal organs to the forms seen in the blood. Concomitant infections with a Plasmodium tropiduri-like malaria parasite were seen and were sometimes extremely heavy.
Resumo:
We investigated the in vitro action of an hydrosoluble 2-nitroimidazole, Etanidazole (EZL), against Trypanosoma cruzi, the etiologic agent of Chagas disease. EZL displayed lethal activity against isolated trypomastigotes as well as amastigotes of T. cruzi (RA strain) growing in Vero cells or J774 macrophages, without affecting host cell viability. Although not completely equivalent to Benznidazole (BZL), the reference drug for Chagas chemotherapy, EZL takes advantage in exertingits anti-T. cruzi activity for longer periods without serious toxic side effects, as those recorded in BZL-treated patients. Our present results encourage further experiments to study in depth the trypanocidal properties of this drug already licensed for use in human cancers.
Resumo:
In schistosomiasis, the host/parasite interaction remains not completely understood. Many questions related to the susceptibility of snails to infection by respective trematode still remain unanswered. The control of schistosomiasis requires a good understanding of the host/parasite association. In this work, the susceptibility/resistance to Schistosoma mansoni infection within Biomphalaria alexandrina snails were studied starting one month post infection and continuing thereafter weekly up to 10 weeks after miracidia exposure. Genetic variations between susceptible and resistant strains to Schistosoma infection within B. alexandrina snails using random amplified polymorphic DNA analysis technique were also carried out. The results showed that 39.8% of the examined field snails were resistant, while 60.2% of these snails showed high infection rates.In the resistant genotype snails, OPA-02 primer produced a major low molecular weight marker 430 bp. Among the two snail strains there were interpopulational variations, while the individual specimens from the same snail strain, either susceptible or resistant, record semi-identical genetic bands. Also, the resistant character was ascendant in contrast to a decline in the susceptibility of snails from one generation to the next.
Resumo:
Lectins/carbohydrate binding can be involved in the Schistosoma mansoni recognition and activation of the Biomphalaria hemocytes. Therefore, expression of lectin ligands on Biomphalaria hemocytes would be associated with snail resistance against S. mansoni infection. To test this hypothesis, circulating hemocytes were isolated from B. glabrata BH (snail strain highy susceptible to S. mansoni), B. tenagophila Cabo Frio (moderate susceptibility), and B. tenagophila Taim (completely resistant strains), labelled with FITC conjugated lectins (ConA, PNA, SBA, and WGA) and analyzed under fluorescence microscopy. The results demonstrated that although lectin-labelled hemocytes were detected in hemolymph of all snail species tested, circulating hemocytes from both strains of B. tenagophila showed a larger number of lectin-labelled cells than B. glabrata. Moreover, most of circulating hemocytes of B. tenagophila were intensively labelled by lectins PNA-FITC and WGA-FITC, while in B. glabrata small hemocytes were labeled mainly by ConA. Upon S. mansoni infection, lectin-labelled hemocytes almost disappeared from the hemolymph of Taim and accumulated in B. glabrata BH. The role of lectins/carbohydrate binding in resistance of B. tengophila infection to S. mansoni is still not fully understood, but the data suggest that there may be a correlation to its presence with susceptibility or resistance to the parasite.
Resumo:
The name Theileria electrophori n.sp. is proposed for a small parasite described in the erythrocytes of the electric eel, Electrophorus electricus, from Amazonian Brazil. Division of the organism in the erythrocyte produces only four bacilliform daughter cells which become scattered in the host cell, without a cruciform or rosette-shaped disposition. Exoerythrocytic meronts producing a large number of merozoites were encountered in Giemsa-stained impression smears of the internal organs, principally in the liver, and are presumably the source of the intraerythrocytic forms of the parasite. This developmental pattern is characteristic of piroplasms within the family Theileriidae, where the author considers the parasite of E. electricus to most appropriately belong. It effectively distinguishes the organism from the dactylosomatid parasites Babesiosoma Jakowska and Nigrelli, 1956 and Dactylosoma Labbé, 1894 also found in fishes. This appears to be the second report of Theileria Bettencourt, Franca and Borges, 1907 in a fish.