72 resultados para Spent catalyst
Resumo:
Although Jean Paul Marat (1743-1793) is known as a political activist and as a founder of the controversial journal L'Ami du Peuple during the French Revolution, an important period of his life was spent as a medical practionner, and as a scientist. In 1765 he went to England, where he remained for eleven years mostly dedicated to medical practice and publications on that subject and on political and moral questions. Returning to France in 1776 he iniciated his researches on fire, electricity and light, that lasted practically until the French Revolution. In 1787 he published a translation of Newton's Opticks. In this article we describe in some detail his medical and scientific practice giving particular emphasis to his experiments on optics and to his theory about colors which strongly departs from newtonian theory, fully accepted by the French scientific community of the time.
Resumo:
Unusual chemical phenomenon associated with ultrasound is on account of cavitation effect. The ultrasound increase the rate and yield of chemical reaction on account of its ability to emulsify liquids. When the ultrasound is used in metallic catalyst reaction the activity of catalyst is increased because the ultrasound clean the surface of catalyst. Sonogels have a fine porosity and large specific surface improving different properties. This paper deals with ultrasound phenomenon and gives some examples of reactions and properties where this radiation takes an important role.
Resumo:
The catalytic combustion of methane on alumina supported palladium catalysts was studied. It has been reported that the activity of the catalyst increases with its time on line, despite of an increase of the palladium particle size. However, different preparation, pretreatment and testing conditions can be the reason for the observed different results. An experimental design, which allows to verify the influence of several parameters at the same time with a good statistical quality, was used. A Plackett-Burman design was selected for the screening of the variables which have an effect on the increase of the catalyst activity.
Resumo:
The microwave oven became a common domestic equipment, due mainly to the short time spent to heat foods. One of the most interesting characteristics of the microwave oven is the selective heating. Different from the conventional oven, where the heating is not selective, the heating by microwave depends on the chemical nature of the matter. Many Students of Chemistry have no knowledge of the principles involved in this selective heating, in spite of the daily microwave oven use. The heating by microwave is feasible for chemistry courses. In discussions about the microwave absorption by the matter it is possible to explore chemical properties like: heat capacity, chemical bound, molecular structure, dipole moments, polarization and dielectric constant. This paper presents the basic principles involved in the microwave heating. It is proposed a simple and inexpensive experiment that could be developed in general chemistry courses, to illustrate the relationship between heating and the chemical properties of some solvents. Experiments to check the power of the microwave oven are also proposed.
Resumo:
Some aspects of the chemistry involved in the preparation and characterization of functionalized silicon oxide by sol-gel method are considered in this work. The synthesis was performed with different silicon alcoxide precursors and the influence of the acid and basic catalyst was investigated. Characterization was performed by infrared absorption spectroscopy, elemental analysis and 29Si NMR. Infrared data show Si-C and -CH2- vibrational modes at 1250 to 1280 and 2920 to 2940 cm-1, respectively. The elemental analysis confirmed the presence of organic groups in the inorganic silica network. 29Si NMR results show different hydrolisys depending on the acid or base catalysis.
Resumo:
Aluminum and copper doped hematite was evaluated in the high temperature shift (HTS) reaction at several temperatures in order to find catalysts that can work in different operational conditions. It was found that the catalysts work in kinetic regime in the range of 300-400 ºC. Both copper and aluminum increases the activity and selectivity. Aluminum acts as textural promoter whereas copper acts as structural one. The most promising catalyst is that with both copper and aluminum which showed higher activity and selectivity than a commercial sample. This catalyst has the advantages of being non toxic and can work at low temperatures.
Resumo:
This work describes a modified sol-gel method for the preparation of V2O5/TiO2 catalysts. The samples have been characterized by N2 adsorption at 77K, x-ray diffractometry (XRD) and Fourier Transform Infrared (FT-IR). The surface area increases with the vanadia loading from 24 m² g-1, for pure TiO2, to 87 m² g-1 for 9wt.% of V2O5. The rutile form is predominant for pure TiO2 but became enriched with anatase phase when vanadia loading is increased. No crystalline V2O5 phase was observed in the catalysts diffractograms. Two species of surface vanadium observed by FT-IR spectroscopy a monomeric vanadyl and polymeric vanadates, the vanadyl/vanadate ratio remains practically constant.
Resumo:
The reaction between hydroxy-terminated polybutadiene and isophorone diisocyanate constitutes the base of the curing process of the most composite solid propellant used in the propulsion of solid rocket propellant. In this work, differential scanning calorimetry and viscosity measurements were used to evaluate the effect of the ferric acetylacetonate catalyst concentration on the reaction between HTBR and IPDI. These analyses show one exotherm, which shifts to lower temperatures as the catalyst concentration increases. The viscosity analyses show that the increase of temperature causes, at first, a reduction in the mixture viscosity, reaching a minimum range called gelification region (increasing the crosslinking density).
Resumo:
The abatement of recalcitrant lignin macromolecules from effluents of pulp and paper industry was investigated by combined process. Flocculation and coagulation with aluminum sulfate and natural polyelectrolytes extracted from cactus Cereus peruvianus were used in the first step. After separation of solid residues by filtration, the photochemical methods using TiO2 as catalyst were employed for photocatalytic degradation of lignin compounds from solution. The abatement of lignin compounds after flocculation and coagulation was 46%, and after the overall process, the pollutants reduction observed were 66%. The remaining organic compounds may be removed by any biological treatment.
Resumo:
In this work we obtained microporous and mesoporous silica membranes by sol-gel processing. Tetraethylortosilicate (TEOS) was used as precursor. Nitric acid was used as catalyst. In order to study the affect of N,N-dimethylformamide (NDF) as drying additive, we used a molar ratio TEOS/NDF of 1/3. The performance of N,N-dimethylformamide was evaluated through monolithicity measurements. The structural evolutions occurring during the sol-gel transition and in the interconnected network of the membranes during thermal treatment were monitored by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analyses and nitrogen sorption. We noted that in the presence of N,N-dimethylformamide, polymerization goes through a temporary stabilization of oligomers. The Si-O(H) bonds are stronger and belong to a more cross-linked structure for the N,N-dimethylformamide containing sol. The membranes obtained in the presence of N,N-dimethylformamide have larger surface area and its pore structure is in the range of mesoporous. The membranes obtained without additive have pore structure in the range of microporous.
Resumo:
Nickel nanoparticles supported on amorphous silica ceramic matrix were synthesized by the polymeric precursor method. The nanostructure was characterized by NMR, BET, XRD, SEM, TEM, and flame atomic absorption spectrometry techniques. It was observed a dependence of the crystallite size on the thermal annealing, under a N2 atmosphere. The materials presented a high catalytic activity and selectivity upon the beta-pinene hydrogenation reaction. The magnetic hystereses were also correlated with the morphology of the processed material.
Resumo:
The TiO2/UV photocatalytic reactor was investigated as an alternative system to inactivate airborne microorganisms. The experiments performed in the absence of the catalyst showed that direct photolysis was not efficient to destruct microorganisms, with only 30% of inactivation. Similar inactivation percentage was obtained using TiO2 in absence of UV radiation. The destruction of microorganisms present in a contaminated indoor atmosphere, using the combination of TiO2/UV was very efficient, reaching more than 98% of destruction.