131 resultados para Soybean meal and rice bran
Resumo:
There are two vectors of Chagas disease in Chile: Triatoma infestans and Mepraia spinolai. We studied the feeding behavior of these species, looking for differences which could possibly explain the low impact of the latter species on Chagas disease. Both species used thermal cues to locate their feeding source and consumed a similar volume of blood which was inversely related to the body weight before the meal and directly related to the time between meals. The average time between bites were 6.24 and 10.74 days. The average bite of M. spinolai lasted 9.68 min, significantly shorter than the 19.46 min for T. infestans. Furthermore, while T. infestans always defecated on the host, this behavior was observed in M. spinolai in only one case of 27 (3.7%). The delay between the bites and defecation was very long in M. spinolai and short in T. infestans. These differences may affect the reduced efficiency of transmission of Chagas infection by M. spinolai.
Resumo:
Aspects related to hatching, time-lapse between presenting the blood meal and beginning of feeding, feeding time, postfeed defecation delay,life time, mortality and fecundity for each stage of Meccus picturatus, life-cycle were evaluated and compared in two cohorts of M. picturatus fed on hens or rabbits. The hatching rate observed for each of the two studied groups of eggs was 78.1% (n = 2298) on the group fed on hens and 82.1% (n = 2704) on that fed on rabbits, and the average time of hatching was 20 days. Mean time-lapse for beginning feeding was under 3 min in nymphal stages and postfeed defecation delay was under 10 min in all stages, in both cohorts. Mean feeding time was significantly (P < 0.05) shorter in triatomines fed on hens than on rabbits. A similar number of nymphs of each cohort, 69 fed on hens (34.5%) and 68 fed on rabbits (34%), completed the cycle. No significantly (P > 0.05) differences were recorded among the average times from NI to adult in the cohort fed on hens (196.8 ± 15.8 days) and the average time in the cohort fed on rabbits (189.5 ± 22.9). The average span in days for each stage fed on hens was not significantly different to the average span for each stage fed on rabbits. The number of blood meals at each nymphal stage varied from 1 to 6 in both cohorts. The mortality rates were higher on fifth nymphal stage, in both cohorts. No significant (P > 0.05) differences were recorded on mortality rates on most nymphal stages of both cohorts. The average number of eggs laid per female from the cohort fed on hens in a 9-month period was 791.1, whereas the average number of eggs in the cohort fed on rabbits was 928.3.
Resumo:
Aspects related to hatching, time-lapse between presenting the blood-meal and beginning of feeding, feeding time, postfeed defecation delay, mortality, and fecundity for each stage of Meccus longipennis life-cycle were evaluated. The bugs were maintained in a dark incubator at 27 ± 1ºC and 80 ± 5% rh, were fed weekly and checked daily for ecdysis or death. The hatching rate observed for 300 eggs was 76.7% and the average time of hatching was 19.8 days. Mean time-lapse between presentation of the blood meal and the beginning of feeding was under 5 min in nymphal stages and postfeed defecation delay was under 10 min in most stages, except in fourth and fifth stages. Mean feeding time was longer than 10 min in most stages, except in fourth stage. One hundred thirty-one nymphs (N) (65.5%) completed the cycle and the average time from NI to adult was 192.6 ± 34.8 days. The average span in days for each stage was 18.1 for NI, 21.4 for NII, 29.5 for NIII, 45.5 for NIV and 55.9 for NV. The number of bloodmeals at each nymphal stage varied from 1 to 5. The mortality rate was 3.29 for NI, 6.8 for NII, 2.92 for NIII 3.76 for NIV, and 10.16 for NV nymphs. The average number of eggs laid per female in a 9-month period was 615.6. Based on our results, we conclude that M. longipennis has some biological and behavioral characteristics which influence its capacity of becoming infected and transmitting Trypanosoma cruzi to human populations in those areas of Mexico where it is currently present.
Resumo:
Several biological parameters related to the Triatoma mexicana life-cycle were evaluated in this study. Three cohorts were maintained under different combinations of temperature and relative humidity (RH): 25ºC/50% RH; 25ºC/75% RH; and 30ºC/75% RH. Observed hatching rates varied from 49-57.5% whereas the average time of hatching varied from 19.5-22.7 days. In the three cohorts studied, the mean time-lapse between presentation of the blood meal and the beginning of feeding was less than 5 min in all instars; the mean feeding time was longer than 10 min in all the instars; the post-feed defecation delay was over 10 min in all the instars. Less than 50% of nymphs in each cohort completed the cycle and the average time from 1st instar nymph to adult was more than 255 days for the three cohorts. The number of blood meals before molt at each nymphal instar varied from 1-9. Our results appear to indicate a lack of influence of temperature and RH on the biological parameters of T. mexicana that were studied, which could reflect the adaptation capacity of this species. We also conclude that T. mexicana can not be considered an effective transmitter of Trypanosoma cruzi to human populations in areas where this species is currently present.
Resumo:
Biological aspects of Leucothyreus alvarengai Frey and Leucothyreus aff. semipruinosus Ohaus (Coleoptera, Melolonthidae, Rutelinae) in crop succession at central Brazil. Beetles of the family Melolonthidae make up a large group and some species are considered pests of planted crops. Little information is available on the basic biological aspects of the genus Leucothyreus, such as association with cultivated crops and their occurrence periods. Therefore studies were developed in soybean and corn crops in Tangará da Serra, Mato Grosso, Brazil, with the objective of studying the occurrence and biological aspects of Leucothyreus alvarengai Frey and Leucothyreus aff. semipruinosus Ohaus. For acquisition of immature specimens of both species, in April 2011 sampling was performed in corn fields, in July and October in the fallow area, and in soybeans fields planted in December; in 2012 sampling was performed in January and February in soybean fields and in March in corn fields. In 2011 the total number of larvae obtained in April, July, October and December were 100, 6, 30 and 27, and in January, February and March of 2012 these quantities were 32, 52 and 65 larvae, respectively. In all sampling events the larvae of L. alvarengai were collected in greater quantity. At the beginning of the reproductive period of L. alvarengai and L. aff. semipruinosus, it was observed that the adults began to fly and soon after started oviposition in the field in September. The appearance of larvae coincides with the time of soybean planting in the field, thus the larvae feed on roots of soybean plants at the beginning of their development and the cycle from egg to adult of the two species was completed in one year.
Resumo:
A large proportion of soybean fields in Brazil are currently cultivated in the Cerrado region, where the area planted with this crop is growing considerably every year. Soybean cultivation in acid soils is also increasing worldwide. Since the levels of toxic aluminum (Al) in these acid soils is usually high it is important to understand how cations can reduce Al rhizotoxicity in soybean. In the present study we evaluated the ameliorative effect of nine divalent cations (Ca, Mg, Mn, Sr, Sn, Cu, Zn, Co and Ba) in solution culture on Al rhizotoxicity in soybean. The growth benefit of Ca and Mg to plants in an acid Inceptisol was also evaluated. In this experiment soil exchangeable Ca:Mg ratios were adjusted to reach 10 and 60 % base saturation, controlled by different amounts of CaCl2 or MgCl2 (at proportions from 100:0 up to 0:100), without altering the soil pH level. The low (10 %) and adequate (60 %) base saturation were used to examine how plant roots respond to Al at distinct (Ca + Mg)/Al ratios, as if they were growing in soils with distinct acidity levels. Negative and positive control treatments consisted of absence (under native soil or undisturbed conditions) or presence of lime (CaCO3) to reach 10 and 60 % base saturation, respectively. It was observed that in the absence of Aluminum, Cu, Zn, Co and Sn were toxic even at a low concentration (25 µmol L-1), while the effect of Mn, Ba, Sr and Mg was positive or absent on soybean root elongation when used in concentrations up to 100 µmol L-1. At a level of 10 µmol L-1 Al, root growth was only reverted to the level of control plants by the Mg treatment. Higher Tin doses led to a small alleviation of Al rhizotoxicity, while the other cations reduced root growth or had no effect. This is an indication that the Mg effect is ion-specific and not associated to an electrostatic protection mechanism only, since all ions were divalent and used at low concentrations. An increased exchangeable Ca:Mg ratio (at constant soil pH) in the acid soil almost doubled the soybean shoot and root dry matter even though treatments did not modify soil pH and exchangeable Al3+. This indicates a more efficient alleviation of Al toxicity by Mg2+ than by Ca2+. The reason for the positive response to Mg2+ was not the supply of a deficient nutrient because CaCO3 increased soybean growth by increasing soil pH without inducing Mg2+ deficiency. Both in hydroponics and acid soil, the reduction in Al toxicity was accompanied by a lower Al accumulation in plant tissue, suggesting a competitive cation absorption and/or exclusion of Al from plant tissue stimulated by an Mg-induced physiological mechanism.
Resumo:
Nitrous oxide (N2O) is the most important non-CO2 greenhouse gas and soil management systems should be evaluated for their N2O mitigation potential. This research evaluated a long-term (22 years) experiment testing the effect of soil management systems on N2O emissions in the postharvest period (autumn) from a subtropical Rhodic Hapludox at the research center FUNDACEP, in Cruz Alta, state of Rio Grande do Sul. Three treatments were evaluated, one under conventional tillage with soybean residues (CTsoybean) and two under no-tillage with soybean (NTsoybean) and maize residues (NTmaize). N2O emissions were measured eight times within 24 days (May 2007) using closed static chambers. Gas flows were obtained based on the relations between gas concentrations in the chamber at regular intervals (0, 15, 30, 45 min) analyzed by gas chromatography. After soybean harvest, accumulated N2O emissions in the period were approximately three times higher in the untilled soil (164 mg m-2 N) than under CT (51 mg m-2 N), with a short-lived N2O peak of 670 mg m-2 h-1 N. In contrast, soil N2O emissions in NT were lower after maize than after soybean, with a N2O peak of 127 g m-2 h-1 N. The multivariate analysis of N2O fluxes and soil variables, which were determined simultaneously with air sampling, demonstrated that the main driving variables of soil N2O emissions were soil microbial activity, temperature, water-filled pore space, and NO3- content. To replace soybean monoculture, crop rotation including maize must be considered as a strategy to decrease soil N2O emissions from NT soils in Southern Brazil in a Autumn.
Resumo:
Orchid fertilization is fundamental for a satisfactory plant growth and development for commercial orchid production as well as in collections. Mineral and/or organic sources can be used for fertilization. The objective of this study was to evaluate the effect of the use of organic and/or mineral fertilizers on the nutrition and growth of orchid (Laelia purpurata 'werkhanserii' x L. lobata 'Jeni') seedlings in greenhouse. The following fertilizers were tested: an NPK fertilizer + micronutrients; a Ca source in the form of calcium nitrate; two organic fertilizers, one prepared with a mixture of bone meal, castor meal and ash, and a similar commercial fertilizer. The organic fertilizers were distributed on the surface of the pots every two months and the minerals were applied weekly to the substrate in 25 mL aliquots of a solution containing 1 g L-1 of the respective fertilizer. The plant response to the application of mineral together with organic fertilizer was better, with higher dry matter production than by the isolated application of each fertilizer (organic or mineral). The treatments with calcium nitrate + NPK fertilizer did not differ significantly from the use of NPK fertilizer, probably due to the S deficiency detected in a mineral analysis of the tissues. Commercial organic fertilizer had a very elevated B level, leading to toxicity symptoms, reduced growth and necrotized tips of the older leaves in all fertilized treatments.
Resumo:
It is well-known nowadays that soil variability can influence crop yields. Therefore, to determine specific areas of soil management, we studied the Pearson and spatial correlations of rice grain yield with organic matter content and pH of an Oxisol (Typic Acrustox) under no- tillage, in the 2009/10 growing season, in Selvíria, State of Mato Grosso do Sul, in the Brazilian Cerrado (longitude 51º24' 21'' W, latitude 20º20' 56'' S). The upland rice cultivar IAC 202 was used as test plant. A geostatistical grid was installed for soil and plant data collection, with 120 sampling points in an area of 3.0 ha with a homogeneous slope of 0.055 m m-1. The properties rice grain yield and organic matter content, pH and potential acidity and aluminum content were analyzed in the 0-0.10 and 0.10-0.20 m soil layers. Spatially, two specific areas of agricultural land management were discriminated, differing in the value of organic matter and rice grain yield, respectively with fertilization at variable rates in the second zone, a substantial increase in agricultural productivity can be obtained. The organic matter content was confirmed as a good indicator of soil quality, when spatially correlated with rice grain yield.
Resumo:
Management systems involving crop rotation, ground cover species and reduced soil tillage can improve the soil physical and biological properties and reduce degradation. The primary purpose of this study was to assess the effect of various crops grown during the sugarcane fallow period on the production of glomalin and arbuscular mycorrhizal fungi in two Latosols, as well as their influence on soil aggregation. The experiment was conducted on an eutroferric Red Latosol with high-clay texture (680 g clay kg-1) and an acric Red Latosol with clayey texture (440 g kg-1 clay) in Jaboticabal (São Paulo State, Brazil). A randomized block design involving five blocks and four crops [soybean (S), soybean/fallow/soybean (SFS), soybean/millet/soybean (SMS) and soybean/sunn hemp/soybean (SHS)] was used to this end. Soil samples for analysis were collected in June 2011. No significant differences in total glomalin production were detected between the soils after the different crops. However, total external mycelium length was greater in the soils under SMS and SHS. Also, there were differences in easily extractable glomalin, total glomalin and aggregate stability, which were all greater in the eutroferric Red Latosol than in the acric Red Latosol. None of the cover crops planted in the fallow period of sugarcane improved aggregate stability in either Latosol.
Resumo:
Soils of the tropics are prone to a decrease in quality after conversion from native forest (FO) to a conventional tillage system (CT). However, the adoption of no-tillage (NT) and complex crop rotations may improve soil structural quality. Thus, the aim of this study was to evaluate the physical properties of an Oxisol under FO, CT, and three summer crop sequences in NT: continuous corn (NTcc), continuous soybean (NTcs), and a soybean/corn rotation (NTscr). Both NT and CT decreased soil organic carbon (SOC) content, SOC stock, water stable aggregates (WSA), geometric mean diameter (GMD), soil total porosity (TP), macroporosity (MA), and the least limiting water range (LLWR). However they increased soil bulk density (BD) and tensile strength (TS) of the aggregates when compared to soil under FO. Soil under NT had higher WSA, GMD, BD, TS and microporosty, but lower TP and MA than soil under CT. Soil under FO did not attain critical values for the LLWR, but the lower limit of the LLWR in soils under CT and NT was resistance to penetration (RP) for all values of BD, while the upper limit of field capacity was air-filled porosity for BD values greater than 1.46 (CT), 1.40 (NTscr), 1.42 (NTcc), and 1.41 (NTcs) kg dm-3. Soil under NTcc and NTcs decreased RP even with the increase in BD because of the formation of biopores. Furthermore, higher critical BD was verified under NTcc (1.62 kg dm-3) and NTcs (1.57 kg dm-3) compared to NTscr and CT (1.53 kg dm-3).
Resumo:
Agricultural production systems that include the production of mulch for no-tillage farming and structural improvement of the soil can be considered key measures for agricultural activity in the Cerrado region without causing environmental degradation. In this respect, our work aimed to evaluate the chemical and physical-hydric properties of a dystrophic Red Latosol (Oxisol) in the municipality of Rio Verde, Goias, Brazil, under different soil management systems in the between-crop season of soybean cultivation five years after first planting. The following conditions were evaluated: Brachiaria brizantha cv. Marandu as a cover crop during the between-crop season; Second crop of maize intercropped with Brachiaria ruziziensis; Second crop of grain alone in a no-tillage system; Fallow soil after the soybean harvest; and Forest (natural vegetation) located in an adjacent area. Soil samples up to a depth of 40 cm were taken and used in the assessment of chemical properties and soil structure diagnostics. The results demonstrated that the conversion of native vegetation areas into agricultural fields altered the chemical and physical-hydric properties of the soil at all the depths evaluated, especially up to 10 cm, due to the activity of root systems in the soil structure. Cultivation of B. brizantha as a cover crop during the summer between-crop season increased soil water availability, which is important for agricultural activities in the region under study.
Resumo:
The objective of this work was to evaluate the efficiency of soybean (Glycine max) in intercepting and using solar radiation under natural field conditions, in the Amazon region, Brazil. The meteorological data and the values of soybean growth and leaf area were obtained from an agrometeorological experiment carried out in Paragominas, Pará state, during 2007 and 2008. The radiation use efficiency (RUE) was obtained from the ratio between the above-ground biomass production and the intercepted photosynthetically active radiation (PAR) accumulated to 99 and 95 days after sowing, in 2007 and 2008, respectively. Climatic conditions during the experiment were very distinct, with reduction in rainfall in 2007, which began during the soybean mid-cycle, due to the El Niño phenomenon. An important reduction in the leaf area index and biomass production was observed during 2007. Under natural field conditions in the Amazon region, the values of RUE were 1.46 and 1.99 g MJ-1 PAR in the 2007 and 2008 experiments, respectively. The probable reason for the differences found between these years might be associated to the water restriction in 2007 coupled with the higher air temperature and vapor pressure deficit, and also to the increase in the fraction of diffuse radiation that reached the land surface in 2008.
Resumo:
The objective of this work was to standardize a semiautomated method for genotyping soybean, based on universal tail sequence primers (UTSP), and to compare it with the conventional genotyping method that uses electrophoresis in polyacrylamide gels. Thirty soybean cultivars were genotypically characterized by both methods, using 13 microsatellite loci. For the UTSP method, the number of alleles (NA) was 50 (2-7 per marker) and the polymorphic information content (PIC) ranged from 0.40 to 0.74. For the conventional method, the NA was 38 (2-5 per marker) and the PIC varied from 0.39 to 0.67. The genetic dissimilarity matrices obtained by the two methods were highly correlated with each other (0.8026), and the formed groups were coherent with the phenotypic data used for varietal registration. The 13 markers allowed the distinction of all analyzed cultivars. The low cost of the UTSP method, associated with its high accuracy, makes it ideal for the characterization of soybean cultivars and for the determination of genetic purity.
Resumo:
The objective of this work was to evaluate the genetic diversity among Sclerotinia sclerotiorum isolates from Brazil and the USA, assess their aggressiveness variability, and verify the existence of an isolate-cultivar interaction. Isolate variability was determined by mycelial compatibility grouping (MCG), and isolate aggressiveness by cut-stem inoculations of soybean cultivars. Two experiments for MCGs and two for aggressiveness were conducted with two sets of isolates. The first set included nine isolates from the same soybean field in Brazil and nine from the Midwest region of the USA. The second set included 16 isolates from several regions of Brazil and one from the USA. In the first set, 18 isolates formed 12 different MCGs. In the second set, 81% of the isolates from Brazil grouped into a single MCG. No common MCGs were observed among isolates from Brazil and the USA. The isolates showed aggressiveness differences in the first set, but not in the second. Although aggressiveness differed in the first set, soybean cultivars and isolates did not interact significantly. Cultivar rank remained the same, regardless of the genetic diversity, aggressiveness difference, and region or country of origin of the isolate. Results from screening of soybean cultivars, performed by the cut-stem method in the USA, can be used as reference for researchers in Brazil.