64 resultados para Scaffolds, Microstructure, Cell adhesion, Confocal microscopy, Image analysis
Resumo:
In order to determine the effect of antibodies against electronegative low-density lipoprotein LDL(-) on atherogenesis, five groups of LDL low receptor-deficient (LDLr-/-) mice (6 per group) were immunized with the following antibodies (100 µg each): mouse anti-LDL(-) monoclonal IgG2b, rabbit anti-LDL(-) polyclonal IgG or its Fab fragments and mouse irrelevant monoclonal IgG and non-immunized controls. Antibodies were administered intravenously one week before starting the hypercholesterolemic diet (1.25% cholesterol) and then every week for 21 days. The passive immunization with anti-LDL(-) monoclonal IgG2b, polyclonal antibody and its derived Fab significantly reduced the cross-sectional area of atherosclerotic lesions at the aortic root of LDLr-/- mice (28.8 ± 9.7, 67.3 ± 17.02, 56.9 ± 8.02 µm² (mean ± SD), respectively) compared to control (124.9 ± 13.2 µm²). Vascular cell adhesion molecule-1 protein expression, quantified by the KS300 image-analyzing software, on endothelium and the number of macrophages in the intima was also decreased in aortas of mice treated with anti-LDL(-) monoclonal antibody (3.5 ± 0.70 per field x 10) compared to controls (21.5 ± 3.5 per field x 10). Furthermore, immunization with the monoclonal antibody decreased the concentration of LDL(-) in blood plasma (immunized: 1.0 ± 1.4; control: 20.5 ± 3.5 RLU), the amount of cholesterol oxides in plasma (immunized: 4.7 ± 2.7; control: 15.0 ± 2.0 pg COx/mg cholesterol) and liver (immunized: 2.3 ± 1.5; control: 30.0 ± 26.0 pg COx/mg cholesterol), and the hepatic content of lipid hydroperoxides (immunized: 0.30 ± 0.020; control: 0.38 ± 0.15 ng/mg protein). In conclusion, antibodies against electronegative LDL administered intravenously may play a protective role in atherosclerosis.
Resumo:
Mesenchymal stem cells (MSCs) have been reported to secrete a variety of cytokines and growth factors acting as trophic suppliers, but little is known regarding the effects of conditioned medium (CM) of MSCs isolated from femurs and tibias of mouse on the artificial activation of mouse oocytes and on the developmental competence of the parthenotes. In the current study, we investigated the effect of CM on the events of mouse oocyte activation, namely oscillations of cytosolic calcium concentration ([Ca²+]i), meiosis resumption, pronucleus formation, and parthenogenetic development. The surface markers of MSCs were identified with a fluorescence-activated cell sorter. The dynamic changes of the spindle and formation of pronuclei were examined by laser-scanning confocal microscopy. Exposure of cumulus-oocyte complexes to CM for 40 min was optimal for inducing oocyte parthenogenetic activation and evoking [Ca²+]i oscillations similar to those evoked by sperm (95 vs 100%; P > 0.05). Parthenogenetically activated oocytes immediately treated with 7.5 µg/mL cytochalasin B (CB), which inhibited spindle rotation and second polar body extrusion, were mostly diploid (93 vs 6%, P < 0.01) while CB-untreated oocytes were mostly haploid (5 vs 83%, P < 0.01). Consequently, the blastocyst rate was higher in the CB-treated than in the CB-untreated oocytes. There was no significant difference in developmental rate between oocytes activated with CM and 7% ethanol (62 vs 62%, P > 0.05), but the developmental competence of the fertilized oocytes was superior to that of the parthenotes (88 vs 62%, P < 0.05). The present results demonstrate that CM can effectively activate mouse oocytes, as judged by the generation of [Ca²+]i oscillations, completion of meiosis and parthenogenetic development.
Resumo:
Hepatocellular carcinoma (HCC) is the third highest cause of cancer death worldwide. In general, the disease is diagnosed at an advanced stage when potentially curative therapies are no longer feasible. For this reason, it is very important to develop new therapeutic approaches. Retinoic acid (RA) is a natural derivative of vitamin A that regulates important biological processes including cell proliferation and differentiation. In vitro studies have shown that RA is effective in inhibiting growth of HCC cells; however, responsiveness to treatment varies among different HCC cell lines. The objective of the present study was to determine if the combined use of RA (0.1 µM) and cAMP (1 mM), an important second messenger, improves the responsiveness of HCC cells to RA treatment. We evaluated the proliferative behavior of an HCC cell line (HTC) and the expression profile of genes related to cancer signaling pathway (ERK and GSK-3β) and liver differentiation (E-cadherin, connexin 26 (Cx26), and Cx32). RA and cAMP were effective in inhibiting the proliferation of HTC cells independently of combined use. However, when a mixture of RA and cAMP was used, the signals concerning the degree of cell differentiation were increased. As demonstrated by Western blot, the treatment increased E-cadherin, Cx26, Cx32 and Ser9-GSK-3β (inactive form) expression while the expression of Cx43, Tyr216-GSK-3β (active form) and phosphorylated ERK decreased. Furthermore, telomerase activity was inhibited along treatment. Taken together, the results showed that the combined use of RA and cAMP is more effective in inducing differentiation of HTC cells.
Resumo:
Hypoxia inducible factor-1α (HIF-1α) is an important transcription factor, which plays a critical role in the formation of solid tumor and its microenviroment. The objective of the present study was to evaluate the expression and function of HIF-1α in human leukemia bone marrow stromal cells (BMSCs) and to identify the downstream targets of HIF-1α. HIF-1α expression was detected at both the RNA and protein levels using real-time PCR and immunohistochemistry, respectively. Vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1α (SDF-1α) were detected in stromal cells by enzyme-linked immunosorbent assay. HIF-1α was blocked by constructing the lentiviral RNAi vector system and infecting the BMSCs. The Jurkat cell/BMSC co-cultured system was constructed by putting the two cells into the same suitable cultured media and conditions. Cell adhesion and secretion functions of stromal cells were evaluated after transfection with the lentiviral RNAi vector of HIF-1α. Increased HIF-1α mRNA and protein was detected in the nucleus of the acute myeloblastic and acute lymphoblastic leukemia compared with normal BMSCs. The lentiviral RANi vector for HIF-1α was successfully constructed and was applied to block the expression of HIF-1α. When HIF-1α of BMSCs was blocked, the expression of VEGF and SDF-1 secreted by stromal cells were decreased. When HIF-1α was blocked, the co-cultured Jurkat cell’s adhesion and migration functions were also decreased. Taken together, these results suggest that HIF-1α acts as an important transcription factor and can significantly affect the secretion and adhesion functions of leukemia BMSCs.