79 resultados para SYMPATHETIC-NERVOUS-SYSTEM
Resumo:
The long-term effects of low-level lead intoxication are not known. The sympathetic skin response (SSR) was evaluated in a group of 60 former workers of a primary lead smelter, located in Santo Amaro, BA, Brazil. The individuals participating in the study were submitted to a clinical-epidemiological evaluation including questions related to potential risk factors for intoxication, complaints related to peripheral nervous system (PNS) involvement, neurological clinical examination, and also to electromyography and nerve conduction studies and SSR evaluation. The sample consisted of 57 men and 3 women aged 34 to 69 years (mean ± SD: 46.8 ± 6.9). The neurophysiologic evaluation showed the presence of lumbosacral radiculopathy in one of the individuals (1.7%), axonal sensorimotor polyneuropathy in 2 (3.3%), and carpal tunnel syndrome in 6 (10%). SSR was abnormal or absent in 12 cases, representing 20% of the sample. More than half of the subjects (53.3%) reported a history of acute abdominal pain requiring hospitalization during the period of work at the plant. A history of acute palsy of radial and peroneal nerves was reported by about 16.7 and 8.3% of the individuals, respectively. Mean SSR amplitude did not differ significantly between patients presenting or not the various characteristics in the current neurological situation, except for diaphoresis. The results suggest that chronic lead intoxication induces PNS damage, particularly affecting unmyelinated small fibers. Further systematic study is needed to more precisely define the role of lead in inducing PNS injury.
Resumo:
INTRODUCTION: Exclusive or associated lesions in various structures of the autonomic nervous system occur in the chronic forms of Chagas disease. In the indeterminate form, the lesions are absent or mild, whereas in the exclusive or combined heart and digestive disease forms, they are often more pronounced. Depending on their severity these lesions can result mainly in cardiac parasympathetic dysfunction but also in sympathetic dysfunction of variable degrees. Despite the key autonomic effect on cardiovascular functioning, the pathophysiological and clinical significance of the cardiac autonomic dysfunction in Chagas disease remains unknown. METHODS: Review of data on the cardiac autonomic dysfunction in Chagas disease and their potential consequences, and considerations supporting the possible relationship between this disturbance and general or cardiovascular clinical and functional adverse outcomes. RESULTS: We hypothesise that possible consequences that cardiac dysautonomia might variably occasion or predispose in Chagas disease include: transient or sustained arrhythmias, sudden cardiac death, adverse overall and cardiovascular prognosis with enhanced morbidity and mortality, an inability of the cardiovascular system to adjust to functional demands and/or respond to internal or external stimuli by adjusting heart rate and other hemodynamic variables, and immunomodulatory and cognitive disturbances. CONCLUSIONS: Impaired cardiac autonomic modulation in Chagas disease might not be a mere epiphenomenon without significance. Indirect evidences point for a likely important role of this alteration as a primary predisposing or triggering cause or mediator favouring the development of subtle or evident secondary cardiovascular functional disturbances and clinical consequences, and influencing adverse outcomes.
Resumo:
INTRODUCTION: Previous studies describe an imbalance of the autonomic nervous system in Chagas' disease causing increased sympathetic activity, which could influence the genesis of hypertension. However, patients undergoing regular physical exercise could counteract this condition, considering that exercise causes physiological responses through autonomic and hemodynamic changes that positively affect the cardiovascular system. This study aimed to evaluate the effects of an exercise program on blood pressure in hypertensive patients with chronic Chagas' heart disease. METHODS: We recruited 17 patients to a 24-week regular exercise program and used ambulatory blood pressure monitoring before and after training. We determined the differences in the systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean blood pressure (MBP) from the beginning to the end of the study. RESULTS: The blood pressures were evaluated in general and during periods of wakefulness and sleep, respectively: SBP (p = 0.34; 0.23; 0.85), DBP (p = 0.46; 0.44; 0.94) and MBP (p = 0.41; 0.30; 0.97). CONCLUSIONS: There was no statistically significant change in blood pressure after the 24-week exercise program; however, we concluded that physical training is safe for patients with chronic Chagas' disease, with no incidence of increase in blood pressure.
Resumo:
The nerve supply of the human prostate is very abundant, and knowledge of the anatomy contributes to successful administration of local anesthesia. However, the exact anatomy of extrinsic neuronal cell bodies of the autonomic and sensory innervation of the prostate is not clear, except in other animals. Branches of pelvic ganglia composed of pelvic (parasympathetic) and hypogastric (sympathetic) nerves innervate the prostate. The autonomic nervous system plays an important role in the growth, maturation, and secretory function of this gland. Prostate procedures under local anesthesia, such as transurethral prostatic resections or transrectal ultrasound-guided prostatic biopsy, are safe, simple, and effective. Local anesthesia can be feasible for many special conditions including uncomplicated prostate surgery and may be particularly useful for the high-risk group of patients for whom inhalation or spinal anesthesia is inadvisable.
Resumo:
Background: The autonomic nervous system plays a central role in cardiovascular regulation; sympathetic activation occurs during myocardial ischemia. Objective: To assess the spectral analysis of heart rate variability during stent implantation, comparing the types of stent. Methods: This study assessed 61 patients (mean age, 64.0 years; 35 men) with ischemic heart disease and indication for stenting. Stent implantation was performed under Holter monitoring to record the spectral analysis of heart rate variability (Fourier transform), measuring the low-frequency (LF) and high-frequency (HF) components, and the LF/HF ratio before and during the procedure. Results: Bare-metal stent was implanted in 34 patients, while the others received drug-eluting stents. The right coronary artery was approached in 21 patients, the left anterior descending, in 28, and the circumflex, in 9. As compared with the pre-stenting period, all patients showed an increase in LF and HF during stent implantation (658 versus 185 ms2, p = 0.00; 322 versus 121, p = 0.00, respectively), with no change in LF/HF. During stent implantation, LF was 864 ms2 in patients with bare-metal stents, and 398 ms2 in those with drug-eluting stents (p = 0.00). The spectral analysis of heart rate variability showed no association with diabetes mellitus, family history, clinical presentation, beta-blockers, age, and vessel or its segment. Conclusions: Stent implantation resulted in concomitant sympathetic and vagal activations. Diabetes mellitus, use of beta-blockers, and the vessel approached showed no influence on the spectral analysis of heart rate variability. Sympathetic activation was lower during the implantation of drug-eluting stents.
Resumo:
Programmed cell death in the form of apoptosis involves a network of metabolic events and may be triggered by a variety of stimuli in distinct cells. The nervous system contains several neuron and glial cell types, and developmental events are strongly dependent on selective cell interactions. Retinal explants have been used as a model to investigate apoptosis in nervous tissue. This preparation maintains the structural complexity and cell interactions similar to the retina in situ, and contains cells in all stages of development. We review the finding of nuclear exclusion of several transcription factors during apoptosis in retinal cells. The data reviewed in this paper suggest a link between apoptosis and a failure in the nucleo-cytoplasmic partition of transcription factors. It is argued that the nuclear exclusion of transcription factors may be an integral component of apoptosis both in the nervous system and in other types of cells and tissues.
Resumo:
Double-labeling immunohistochemical methods were used to investigate the occurrence of the alpha8 and alpha5 nicotinic receptor subunits in presumptive GABAergic neurons of the chick nervous system. Nicotinic receptor immunoreactivity was often found in cells exhibiting GABA-like immunoreactivity, especially in the visual system. The alpha8 subunit appeared to be present in presumptive GABAergic cells of the ventral lateral geniculate nucleus, nucleus of the basal optic root of the accessory optic system, and the optic tectum, among several other structures. The alpha5 subunit was also found in GABA-positive neurons, as observed in the lentiform nucleus of the mesencephalon and other pretectal nuclei. The numbers of alpha8- and alpha5-positive neurons that were also GABA-positive represented high percentages of the total number of neurons containing nicotinic receptor labeling in several brain areas, which indicates that most of the alpha8 and alpha5 nicotinic receptor subunits are present in GABAergic cells. Taken together with data from other studies, our results indicate an important role of the nicotinic acetylcholine receptors in the functional organization of GABAergic circuits in the visual system.
Resumo:
The purpose of the present study was to evaluate the effects of aerobic physical training (APT) on heart rate variability (HRV) and cardiorespiratory responses at peak condition and ventilatory anaerobic threshold. Ten young (Y: median = 21 years) and seven middle-aged (MA = 53 years) healthy sedentary men were studied. Dynamic exercise tests were performed on a cycloergometer using a continuous ramp protocol (12 to 20 W/min) until exhaustion. A dynamic 24-h electrocardiogram was analyzed by time (TD) (standard deviation of mean R-R intervals) and frequency domain (FD) methods. The power spectral components were expressed as absolute (a) and normalized units (nu) at low (LF) and high (HF) frequencies and as the LF/HF ratio. Control (C) condition: HRV in TD (Y: 108, MA: 96 ms; P<0.05) and FD - LFa, HFa - was significantly higher in young (1030; 2589 ms²/Hz) than in middle-aged men (357; 342 ms²/Hz) only during sleep (P<0.05); post-training effects: resting bradycardia (P<0.05) in the awake condition in both groups; VO2 increased for both groups at anaerobic threshold (P<0.05), and at peak condition only in young men; HRV in TD and FD (a and nu) was not significantly changed by training in either groups. The vagal predominance during sleep is reduced with aging. The resting bradycardia induced by short-term APT in both age groups suggests that this adaptation is much more related to intrinsic alterations in sinus node than in efferent vagal-sympathetic modulation. Furthermore, the greater alterations in VO2 than in HRV may be related to short-term APT.
Resumo:
Several studies have reported impairment in cardiovascular function and control in diabetes. The studies cited in this review were carried out from a few days up to 3 months after streptozotocin administration and were concerned with the control of the circulation. We observed that early changes (5 days) in blood pressure control by different peripheral receptors were maintained for several months. Moreover, the impairment of reflex responses observed after baroreceptor and chemoreceptor stimulation was probably related to changes in the efferent limb of the reflex arc (sympathetic and parasympathetic), but changes also in the central nervous system could not be excluded. Changes in renal sympathetic nerve activity during volume expansion were blunted in streptozotocin-treated rats, indicating an adaptive natriuretic and diuretic response in the diabetic state. The improvement of diabetic cardiovascular dysfunction induced by exercise training seems to be related to changes in the autonomic nervous system. Complementary studies about the complex interaction between circulation control systems are clearly needed to adequately address the management of pathophysiological changes associated with diabetes.
Resumo:
We investigated the acute effects of centrally acting antihypertensive drugs on the microcirculation of pentobarbital-anesthetized spontaneously hypertensive rats (SHR). The effects of the sympatho-inhibitory agents clonidine and rilmenidine, known to activate both alpha2-adrenoceptors and nonadrenergic I1-imidazoline binding sites (I1BS) in the central nervous system, were compared to those of dicyclopropylmethyl-(4,5-dimethyl-4,5-dihydro-3H -pyrrol-2-yl)-amine hydrochloride (LNP 509), which selectively binds to the I1BS. Terminal mesenteric arterioles were observed by intravital microscopy. Activation of the central sympathetic system with L-glutamate (125 µg, ic) induced marked vasoconstriction of the mesenteric microcirculation (27 ± 3%; N = 6, P < 0.05). In contrast, the marked hypotensive and bradycardic effects elicited by intracisternal injection of clonidine (1 µg), rilmenidine (7 µg) and LNP 509 (60 µg) were accompanied by significant increases in arteriolar diameter (12 ± 1, 25 ± 10 and 21 ± 4%, respectively; N = 6, P < 0.05). The vasodilating effects of rilmenidine and LNP 509 were two-fold higher than those of clonidine, although they induced an identical hypotensive effect. Central sympathetic inhibition elicited by baclofen (1 µg, ic), a GABA B receptor agonist, also resulted in vasodilation of the SHR microvessels. The acute administration of clonidine, rilmenidine and LNP 509 also induced a significant decrease of cardiac output, whereas a decrease in systemic vascular resistance was observed only after rilmenidine and LNP 509. We conclude that the normalization of blood pressure in SHR induced by centrally acting antihypertensive agents is paralleled by important vasodilation of the mesenteric microcirculation. This effect is more pronounced with substances acting preferentially (rilmenidine) or exclusively (LNP 509) upon I1BS than with those presenting important alpha2-adrenergic activity (clonidine).
Resumo:
The effect of swimming training (ST) on vagal and sympathetic cardiac effects was investigated in sedentary (S, N = 12) and trained (T, N = 12) male Wistar rats (200-220 g). ST consisted of 60-min swimming sessions 5 days/week for 8 weeks, with a 5% body weight load attached to the tail. The effect of the autonomic nervous system in generating training-induced resting bradycardia (RB) was examined indirectly after cardiac muscarinic and adrenergic receptor blockade. Cardiac hypertrophy was evaluated by cardiac weight and myocyte morphometry. Plasma catecholamine concentrations and citrate synthase activity in soleus muscle were also determined in both groups. Resting heart rate was significantly reduced in T rats (355 ± 16 vs 330 ± 20 bpm). RB was associated with a significantly increased cardiac vagal effect in T rats (103 ± 25 vs 158 ± 40 bpm), since the sympathetic cardiac effect and intrinsic heart rate were similar for the two groups. Likewise, no significant difference was observed for plasma catecholamine concentrations between S and T rats. In T rats, left ventricle weight (13%) and myocyte dimension (21%) were significantly increased, suggesting cardiac hypertrophy. Skeletal muscle citrate synthase activity was significantly increased by 52% in T rats, indicating endurance conditioning. These data suggest that RB induced by ST is mainly mediated parasympathetically and differs from other training modes, like running, that seems to mainly decrease intrinsic heart rate in rats. The increased cardiac vagal activity associated with ST is of clinical relevance, since both are related to increased life expectancy and prevention of cardiac events.
Resumo:
The objective of the present study was to identify metabolic, cardiovascular and autonomic changes induced by fructose overload administered in the drinking water of rats for 8 weeks. Female Wistar rats (200-220 g) were divided into 2 groups: control (N = 8) and fructose-fed rats (N = 5; 100 mg/L fructose in drinking water for 8 weeks). The autonomic control of heart rate was evaluated by pharmacological blockade using atropine (3 mg/kg) and propranolol (4 mg/kg). The animals were submitted to an intravenous insulin tolerance test (ITT) and to blood glucose measurement. The fructose overload induced a significant increase in body weight (~10%) and in fasting glycemia (~28%). The rate constant of glucose disappearance (KITT) during ITT was lower in fructose-fed rats (3.25 ± 0.7%/min) compared with controls (4.95 ± 0.3%/min, P < 0.05) indicating insulin resistance. The fructose-fed group presented increased arterial pressure compared to controls (122 ± 3 vs 108 ± 1 mmHg, P < 0.05) and a reduction in vagal tonus (31 ± 9 vs 55 ± 5 bpm in controls, P < 0.05). No changes in sympathetic tonus were observed. A positive correlation, tested by the Pearson correlation, was demonstrable between cardiac vagal tonus and KITT (r = 0.8, P = 0.02). These data provided new information regarding the role of parasympathetic dysfunction associated with insulin resistance in the development of early metabolic and cardiovascular alterations induced by a high fructose diet.
Resumo:
Our objective was to determine the effect of arachidonylethanolamide (anandamide, AEA) injected intracerebroventricularly (icv) into the lateral ventricle of the rat brain on submandibular gland (SMG) salivary secretion. Parasympathetic decentralization (PSD) produced by cutting the chorda tympani nerve strongly inhibited methacholine (MC)-induced salivary secretion while sympathetic denervation (SD) produced by removing the superior cervical ganglia reduced it slightly. Also, AEA (50 ng/5 µL, icv) significantly decreased MC-induced salivary secretion in intact rats (MC 1 µg/kg: control (C), 5.3 ± 0.6 vs AEA, 2.7 ± 0.6 mg; MC 3 µg/kg: C, 17.6 ± 1.0 vs AEA, 8.7 ± 0.9 mg; MC 10 µg/kg: C, 37.4 ± 1.2 vs AEA, 22.9 ± 2.6 mg). However, AEA did not alter the significantly reduced salivary secretion in rats with PSD, but decreased the slightly reduced salivary secretion in rats with SD (MC 1 µg/kg: C, 3.8 ± 0.8 vs AEA, 1.4 ± 0.6 mg; MC 3 µg/kg: C, 14.7 ± 2.4 vs AEA, 6.9 ± 1.2 mg; P < 0.05; MC 10 µg/kg: C, 39.5 ± 1.0 vs AEA, 22.3 ± 0.5 mg; P < 0.001). We showed that the inhibitory effect of AEA is mediated by cannabinoid type 1 CB1 receptors and involves GABAergic neurotransmission, since it was blocked by previous injection of the CB1 receptor antagonist AM251 (500 ng/5 µL, icv) or of the GABA A receptor antagonist, bicuculline (25 ng/5 µL, icv). Our results suggest that parasympathetic neurotransmission from the central nervous system to the SMG can be inhibited by endocannabinoid and GABAergic systems.
Effect of carotid and aortic baroreceptors on cardiopulmonary reflex: the role of autonomic function
Resumo:
We determined the sympathetic and parasympathetic control of heart rate (HR) and the sensitivity of the cardiopulmonary receptors after selective carotid and aortic denervation. We also investigated the participation of the autonomic nervous system in the Bezold-Jarish reflex after selective removal of aortic and carotid baroreceptors. Male Wistar rats (220-270 g) were divided into three groups: control (CG, N = 8), aortic denervation (AG, N = 5) and carotid denervation (CAG, N = 9). AG animals presented increased arterial pressure (12%) and HR (11%) compared with CG, while CAG animals presented a reduction in arterial pressure (16%) and unchanged HR compared with CG. The sequential blockade of autonomic effects by atropine and propranolol indicated a reduction in vagal function in CAG (a 50 and 62% reduction in vagal effect and tonus, respectively) while AG showed an increase of more than 100% in sympathetic control of HR. The Bezold-Jarish reflex was evaluated using serotonin, which induced increased bradycardia and hypotension in AG and CAG, suggesting that the sensitivity of the cardiopulmonary reflex is augmented after selective denervation. Atropine administration abolished the bradycardic responses induced by serotonin in all groups; however, the hypotensive response was still increased in AG. Although the responses after atropine were lower than the responses before the drug, indicating a reduction in vagal outflow after selective denervation, our data suggest that both denervation procedures are associated with an increase in sympathetic modulation of the vessels, indicating that the sensitivity of the cardiopulmonary receptors was modulated by baroreceptor fibers.
Resumo:
Heart rate variability (HRV) provides important information about cardiac autonomic modulation. Since it is a noninvasive and inexpensive method, HRV has been used to evaluate several parameters of cardiovascular health. However, the internal reproducibility of this method has been challenged in some studies. Our aim was to determine the intra-individual reproducibility of HRV parameters in short-term recordings obtained in supine and orthostatic positions. Electrocardiographic (ECG) recordings were obtained from 30 healthy subjects (20-49 years, 14 men) using a digital apparatus (sampling ratio = 250 Hz). ECG was recorded for 10 min in the supine position and for 10 min in the orthostatic position. The procedure was repeated 2-3 h later. Time and frequency domain analyses were performed. Frequency domain included low (LF, 0.04-0.15 Hz) and high frequency (HF, 0.15-0.4 Hz) bands. Power spectral analysis was performed by the autoregressive method and model order was set at 16. Intra-subject agreement was assessed by linear regression analysis, test of difference in variances and limits of agreement. Most HRV measures (pNN50, RMSSD, LF, HF, and LF/HF ratio) were reproducible independent of body position. Better correlation indexes (r > 0.6) were obtained in the orthostatic position. Bland-Altman plots revealed that most values were inside the agreement limits, indicating concordance between measures. Only SDNN and NNv in the supine position were not reproducible. Our results showed reproducibility of HRV parameters when recorded in the same individual with a short time between two exams. The increased sympathetic activity occurring in the orthostatic position probably facilitates reproducibility of the HRV indexes.