82 resultados para SS-433
Resumo:
Soil tillage promotes changes in soil structure. The magnitude of the changes varies with the nature of the soil, tillage system and soil water content and decreases over time after tillage. The objective of this study was to evaluate short-term (one year period) and long-term (nine year period) effects of soil tillage and nutrient sources on some physical properties of a very clayey Hapludox. Five tillage systems were evaluated: no-till (NT), chisel plow + one secondary disking (CP), primary + two (secondary) diskings (CT), CT with burning of crop residues (CTb), and CT with removal of crop residues from the field (CTr), in combination with five nutrient sources: control without nutrient application (C); mineral fertilizers, according to technical recommendations for each crop (MF); 5 Mg ha-1 yr-1 of poultry litter (wetmatter) (PL); 60 m³ ha-1 yr-1 of cattle slurry (CS) and; 40 m³ ha-1 yr-1 of swine slurry (SS). Bulk density (BD), total porosity (TP), and parameters related to the water retention curve (macroporosity, mesoporosity and microporosity) were determined after nine years and at five sampling dates during the tenth year of the experiment. Soil physical properties were tillage and time-dependent. Tilled treatments increased total porosity and macroporosity, and reduced bulk density in the surface layer (0.00-0.05 m), but this effect decreased over time after tillage operations due to natural soil reconsolidation, since no external stress was applied in this period. Changes in pore size distribution were more pronounced in larger and medium pore diameter classes. The bulk density was greatest in intermediate layers in all tillage treatments (0.05-0.10 and 0.12-0.17 m) and decreased down to the deepest layer (0.27-0.32 m), indicating a more compacted layer around 0.05-0.20 m. Nutrient sources did not significantly affect soil physical and hydraulic properties studied.
Resumo:
Organic residue application into soil alter the emission of gases to atmosphere and CO2, CH4, N2O may contribute to increase the greenhouse effect. This experiment was carried out in a restoration area on a dystrophic Ultisol (PVAd) to quantify greenhouse gas (GHG) emissions from soil under castor bean cultivation, treated with sewage sludge (SS) or mineral fertilizer. The following treatments were tested: control without N; FertMin = mineral fertilizer; SS5 = 5 t ha-1 SS (37.5 kg ha-1 N); SS10 = 10 t ha-1 SS (75 kg ha-1 N); and SS20 = 20 t ha-1 SS (150 kg ha-1 N). The amount of sludge was based on the recommended rate of N for castor bean (75 kg ha-1), the N level of SS and the mineralization fraction of N from SS. Soil gas emission was measured for 21 days. Sewage sludge and mineral fertilizers altered the CO2, CH4 and N2O fluxes. Soil moisture had no effect on GHG emissions and the gas fluxes was statistically equivalent after the application of FertMin and of 5 t ha-1 SS. The application of the entire crop N requirement in the form of SS practically doubled the Global Warming Potential (GWP) and the C equivalent emissions in comparison with FertMin treatments.
Resumo:
Water resource quality is a concern of today's society and, as a consequence, low pollutant wastewaters and sludges are being increasingly treated, resulting in continuous production of sewage sludge. Sewage sludge (SS) can be used as soil physical conditioner of agricultural or degraded lands, due to its organic C component. The objective of this research was to evaluate the long-term SS effects on soil physical quality of properties such as bulk density, porosity, permeability and water retention of degraded soils treated with annual SS applications. The SS rates were calculated according to the crop N demand. The field experiment consisted of three treatments: mineral fertilization, 10 and 20 Mg ha-1 of SS (once and twice the SS quantity to meet the maize N demand, respectively), in annual applications to the surface layer of a eutroferric Red Latosol. SS reduced bulk density, increased macroporosity and decreased microporosity after the third application, but did not significantly alter the soil permeability and physical quality as measured by the S index in the surface layer.
Resumo:
Tillage affects soil physical properties, e.g., porosity, and leads to different amounts of mulch on the soil surface. Consequently, tillage is related to the soil temperature and moisture regime. Soil cover, temperature and moisture were measured under corn (Zea mays) in the tenth year of five tillage systems (NT = no-tillage; CP = chisel plow and single secondary disking; CT = primary and double secondary disking; CTb = CT with crop residues burned; and CTr = CT with crop residues removed). The tillage systems were combined with five nutrient sources (C = control; MF = mineral fertilizer; PL = poultry litter; CS = cattle slurry; and SS = swine slurry). Soil cover after sowing was greatest in NT (88 %), medium in CP (38 %) and lowest in CT treatments (< 10 %), but differences decreased after corn emergence. Soil temperature was related with soil cover, and significant differences among tillage were observed at the beginning of the growing season and at corn maturity. Differences in soil temperature and moisture in the surface layer of the tilled treatments were greater during the corn cycle than in untilled treatments, due to differences in intensity of soil mobilization and mulch remaining after soil management. Nutrient sources affected soil temperature and moisture in the most intense part of the corn growth period, and were related to the variation of the corn leaf area index among treatments
Resumo:
Studies on sewage sludge (SS) have confirmed the possibilities of using this waste as fertilizer and/or soil conditioner in crop production areas. Despite restrictions with regard to the levels of potentially toxic elements (PTE) and pathogens, it is believed that properly treated SS with low PTE levels, applied to soil at adequate rates, may improve the soil chemical and microbiological properties. This study consisted of a long-term field experiment conducted on a Typic Haplorthox (eutroferric Red Latosol) treated with SS for seven successive years for maize production, to evaluate changes in the soil chemical and microbiological properties. The treatments consisted of two SS rates (single and double dose of the crop N requirement) and a mineral fertilizer treatment. Soil was sampled in the 0-0.20 m layer and analyzed for chemical properties (organic C, pH, P, K, Ca, Mg, CEC, B, Cu, Fe, Mn, Zn, Cd, Ni, and Pb) and microbiological properties (basal respiration, microbial biomass activity, microbial biomass C, metabolic quotient, microbial quotient, and protease and dehydrogenase enzyme activities). Successive SS applications to soil increased the macro- and micronutrient availability, but the highest SS dose reduced the soil pH significantly, indicating a need for periodic corrections. The SS treatments also affected soil microbial activity and biomass negatively. There were no significant differences among treatments for maize grain yield. After seven annual applications of the recommended sludge rate, the heavy metal levels in the soil had not reached toxic levels.
Resposta do abacaxizeiro 'Vitória' a doses de nitrogênio em solos de tabuleiros costeiros da Paraíba
Resumo:
Apesar de importantes, são bastante escassas as informações sobre adubação e nutrição mineral de cultivares de abacaxi resistentes à fusariose. O objetivo deste trabalho foi avaliar a resposta do abacaxizeiro 'Vitória', em termos de nutrição mineral, produção e qualidade, à aplicação de doses crescentes de N, em Espodossolo Humilúvico da região de Tabuleiros Costeiros, Estado da Paraíba. O experimento foi conduzido em delineamento experimental de blocos casualizados, com cinco tratamentos, correspondente às doses de 100, 200, 300, 500 e 600 kg ha-1 de N (ureia aos 60, 180 e 270 dias após o plantio), e três repetições. Avaliaram-se o comprimento, a matéria fresca da folha 'D' e os teores de N, P e K nas porções clorofilada e aclorofilada aos 300 e 420 dap; e peso médio, produtividade, atributos físicos (peso, comprimento e diâmetro mediano de infrutescências; peso e comprimento de coroa) e químicos (pH, sólidos solúveis - SS, acidez titulável - AT e relação SS/AT) de infrutescências na colheita. A elevação da dose de N aumentou linearmente os valores de comprimento e matéria fresca da folha 'D'. O aumento das doses promoveu também elevação dos teores de N e diminuição dos de P e K da porção clorofilada aos 300 dap, sem alterar, entretanto, os teores desses nutrientes aos 420 dap. Na porção aclorofilada, a elevação das doses de N aumentou os teores de K aos 320 dap, mas diminuiu-os aos 420 dap. Os valores de peso de infrutescências e de produtividade aumentaram com a elevação das doses de N, estimando-se valores máximos de 1,0 kg e 37,9 t ha-1, com doses de 409,0 e 439,0 kg ha-1 de N, respectivamente. As doses de N não alteraram os atributos de qualidade das infrutescências, as quais se mostraram compatíveis com as características descritas para a cultivar.
Resumo:
The use of cover crops in vineyards is a conservation practice with the purpose of reducing soil erosion and improving the soil physical quality. The objective of this study was to evaluate cover crop species and management systems on soil physical properties and grape yield. The experiment was carried out in Bento Gonçalves, RS, Southern Brazil, on a Haplic Cambisol, in a vineyard established in 1989, using White and Rose Niagara grape (Vitis labrusca L.) in a horizontal, overhead trellis system. The treatments were established in 2002, consisting of three cover crops: spontaneous species (SS), black oat (Avena strigosa Schreb) (BO), and a mixture of white clover (Trifolium repens L.), red clover (Trifolium pratense L.) and annual rye-grass (Lolium multiflorum L.) (MC). Two management systems were applied: desiccation with herbicide (D) and mechanical mowing (M). Soil under a native forest (NF) area was collected as a reference. The experimental design consisted of completely randomized blocks, with three replications. The soil physical properties in the vine rows were not influenced by cover crops and were similar to the native forest, with good quality of the soil structure. In the inter-rows, however, there was a reduction in biopores, macroporosity, total porosity and an increase in soil density, related to the compaction of the surface soil layer. The M system increased soil aggregate stability compared to the D system. The treatments affected grapevine yield only in years with excess or irregular rainfall.
Resumo:
The no-till system with complex cropping sequences may improve the structural quality and carbon (C) sequestration in soils of the tropics. Thus, the objective of this study was to evaluate the effects of cropping sequences after eight years under the no-till system on the physical properties and C sequestration in an Oxisol in the municipality of Jaboticabal, Sao Paulo, Brazil. A randomized split-block design with three replications was used. The treatments were combinations of three summer cropping sequences - corn/corn (Zea mays L.) (CC), soybean/soybean (Glycine max L. Merryll) (SS), and soybean-corn (SC); and seven winter crops - corn, sunflower (Helianthus annuus L.), oilseed radish (Raphanus sativus L.), pearl millet (Pennisetum americanum (L.) Leeke), pigeon pea (Cajanus cajan (L.) Millsp), grain sorghum (Sorghum bicolor (L.) Moench), and sunn hemp (Crotalaria juncea L.). Soil samples were taken at the 0-10 cm depth after eight years of experimentation. Soil under SC and CC had higher mean weight diameter (3.63 and 3.55 mm, respectively) and geometric mean diameter (3.55 and 2.92 mm) of the aggregates compared to soil under SS (3.18 and 2.46 mm). The CC resulted in the highest soil organic C content (17.07 g kg-1), soil C stock (15.70 Mg ha-1), and rate of C sequestration (0.70 Mg ha-1 yr-1) among the summer crops. Among the winter crops, soil under pigeon pea had the highest total porosity (0.50 m³ m-3), and that under sunn hemp had the highest water stable aggregates (93.74 %). In addition, sunn hemp did not differ from grain sorghum and contained the highest soil organic C content (16.82 g kg-1) and also had the highest rate of C sequestration (0.67 Mg ha-1 yr-1). The soil resistance to penetration was the lower limit of the least limiting water range, while the upper limit was air-filled porosity for soil bulk densities higher than 1.39 kg dm-3 for all cropping sequences. Within the SC sequence, soil under corn and pigeon pea increased least limiting water range by formation of biopores because soil resistance to penetration decreased with the increase in soil bulk density.
Resumo:
Organic matter plays an important role in many soil properties, and for that reason it is necessary to identify management systems which maintain or increase its concentrations. The aim of the present study was to determine the quality and quantity of organic C in different compartments of the soil fraction in different Amazonian ecosystems. The soil organic matter (FSOM) was fractionated and soil C stocks were estimated in primary forest (PF), pasture (P), secondary succession (SS) and an agroforestry system (AFS). Samples were collected at the depths 0-5, 5-10, 10-20, 20-40, 40-60, 60-80, 80-100, 100-160, and 160-200 cm. Densimetric and particle size analysis methods were used for FSOM, obtaining the following fractions: FLF (free light fraction), IALF (intra-aggregate light fraction), F-sand (sand fraction), F-clay (clay fraction) and F-silt (silt fraction). The 0-5 cm layer contains 60 % of soil C, which is associated with the FLF. The F-clay was responsible for 70 % of C retained in the 0-200 cm depth. There was a 12.7 g kg-1 C gain in the FLF from PF to SS, and a 4.4 g kg-1 C gain from PF to AFS, showing that SS and AFS areas recover soil organic C, constituting feasible C-recovery alternatives for degraded and intensively farmed soils in Amazonia. The greatest total stocks of carbon in soil fractions were, in decreasing order: (101.3 Mg ha-1 of C - AFS) > (98.4 Mg ha-1 of C - FP) > (92.9 Mg ha-1 of C - SS) > (64.0 Mg ha-1 of C - P). The forms of land use in the Amazon influence C distribution in soil fractions, resulting in short- or long-term changes.
Resumo:
ABSTRACT The large production of sewage sludge (SS), especially in large urban centers, has led to the suggestion of using this waste as fertilizer in agriculture. The economic viability of this action is great and contributes to improve the environment by cycling the nutrients present in this waste, including high contents of organic matter and plant nutrients. This study evaluated the chemical and biochemical properties of Dystrophic and EutroferricLatossolos Vermelhos (Oxisols) under corn and after SS application at different rates for 16 years. The field experiment was carried out in Jaboticabal, São Paulo State, Brazil, using a randomized block design with four treatments and five replications. Treatments consisted of control - T1 (mineral fertilization, without SS application), 5 Mg ha-1 SS - T2, 10 Mg ha-1 SS - T3, and 20 Mg ha-1 SS - T4 (dry weight base). The data were submitted to variance analysis and means were compared by the Duncan test at 5 %. Sewage sludge increased P extracted by resin in both theLatossolos Vermelhos, Dystrophic and Eutroferric, and the organic matter content in the Dystrophic Latossolo Vermelho. The waste at the rate 20 Mg ha-1 on a dry weight basis promoted increases in acid phosphatase activity in Eutroferric Latossolo Vermelho, basal respiration and metabolic quotient in DystrophicLatossolo Vermelho. The rate 20 Mg ha-1 sewage sludge on a dry weight basis did not alter the soil microbial biomass in both the Latossolos Vermelhos; in addition, it improved corn yields without inducing any symptoms of phytotoxicity or nutrient deficiency in the plants.
Resumo:
ABSTRACT The combined incorporation of sewage sludge (SS) and oat straw (OS) to the soil can increase straw carbon mineralization and microbial nitrogen immobilization. This hypothesis was tested in two laboratory experiments, in which SS was incorporated in the soil with and without OS. One treatment in which only straw was incorporated and a control with only soil were also evaluated. The release of CO2 and mineral N in the soil after organic material incorporation was evaluated for 110 days. The cumulative C mineralization reached 30.1 % for SS and 54.7 % for OS. When these organic materials were incorporated together in the soil, straw C mineralization was not altered. About 60 % of organic N in the SS was mineralized after 110 days. This N mineralization index was twice as high as that defined by Resolution 375/2006 of the National Environmental Council. The combined incorporation of SS and OS in the soil caused an immobilization of microbial N of 5.9 kg Mg-1 of OS (mean 3.5 kg Mg-1). The results of this study indicated that SS did not increase straw C mineralization, but the SS rate should be adjusted to compensate for the microbial N immobilization caused by straw.
Resumo:
A proliferação de produtos culturais sobre as solteiras sugere uma preocupação internacional com o tema na contemporaneidade. A mídia brasileira também focaliza o fenômeno da nova solteira em sintonia com a literatura e filmografia sobre mulheres com mais de 30 anos, solteiras, moradoras das grandes cidades. A emergência da expressão "novas solteiras" remete ao ideário feminista de autonomia, liberdade e independência, em oposição à solteirona do passado. Neste artigo, analiso como as mulheres sós costumam ser retratadas em textos da mídia brasileira através de polarizações marcadas por gênero, idade e posição social e geográfica. Ressalto a utilização recorrente de informações validadas por vozes autorizadas de especialistas acadêmicos, sobretudo da área psi. Por fim, mostro como algumas matérias enfatizam a solidão e a transitoriedade do morar só, operando outras oposições marcadas por gênero
Resumo:
Com o objetivo de melhor entender os mecanismos genéticos do tempo para o florescimento em soja (Glycine max (L.) Merrill), foram estudados os genitores e as gerações F2 de um dialelo com a cultivar Paraná e seus variantes naturais Paranagoiana, SS-1 e Pirapó 78. Os dados foram obtidos em condições de campo com o fotoperíodo variando de 13 horas e 31 minutos, na data de semeadura, ao máximo de 14 horas e 23 minutos, 59 dias após. Não foi constatada a presença de epistasia na determinação do caráter. O principal componente de variação genética foi o aditivo. Os resultados evidenciaram que o retardamento do início do florescimento é determinado por alelos recessivos. Os alelos que condicionaram a precocidade exibiram dominância parcial. As herdabilidades nos sentidos amplo e restrito foram 99,68% e 89,96%, respectivamente. As informações genéticas sobre o tempo para o florescimento apresentadas, se avaliadas em conjunto com os resultados obtidos por outros pesquisadores, indicam que o tipo de herança depende mais dos genótipos considerados que de uma faixa fotoperiódica específica.
Resumo:
O objetivo deste trabalho foi avaliar o desempenho reprodutivo de porcas multíparas submetidas à infusão uterina de diferentes soluções, realizada no início do estro. Um total de 1.019 fêmeas foram controladas no período de verão (n=570) e inverno (n=449). Os animais foram submetidos a cinco tratamentos, que consistiram em infusão de plasma seminal (PS), sêmen morto (SM), solução de 17beta-estradiol (SE), solução fisiológica (SS) e um grupo-controle (CO). As fêmeas receberam três inseminações: a primeira, 8-12 horas após a detecção do estro, e as demais, nos turnos subseqüentes. Com relação à taxa de retorno ao estro e taxa de parto ajustada, não ocorreram diferenças entre os tratamentos (p>0,05). Na análise do modelo de regressão adotado para determinar o tamanho da leitegada, foi observada uma interação entre época do ano e tratamento (p<=0,01). No verão, as fêmeas que receberam infusão de PS apresentaram 0,89, 1,20, 1,34 e 2,31 leitões a mais, em relação aos tratamentos SE, SM, SS e CO (p<0,05), respectivamente. No inverno, o grupo submetido ao tratamento SS aumentou a produção em 1,25 e 0,91 leitões, respectivamente, em relação aos tratamentos SM e CO (p<0,05). Este trabalho demonstrou que a infusão uterina de PS foi eficiente somente no verão, para aumentar o número de leitões nascidos. Entretanto, são necessários estudos complementares esclarecendo o efeito deste tratamento em épocas do ano distintas e em diferentes ordens de parto.
Resumo:
The objective of this study was to evaluate potato plant growth and macronutrient uptake, as affected by soil tillage methods, in sprinkle and drip irrigated experiments. Eight treatments were set: T1, no tillage, except for furrowing before planting; T2, one subsoiling (SS); T3, twice rotary hoeing (RH); T4, one disc plowing (DP) + twice disc harrow leveling (DL); T5, 1DP + 2DL + 1RH; T6, 1DP + 2DL + 2RH; T7, 1SS + T6; T8, one moldboard plowing (MP) + 2DL. Treatments were arranged in a randomized block design with four replications. In both irrigation systems, plants presented higher emergence velocity index (EVI), when the soil was not tillaged, and the EVI was inversely related to the maximum tuber dry mass production. In both experiments, a functional direct relationship was found between the leaf area index and maximum tuber dry mass yield. The growth of plant organs (tuber, leaf, stem and root) and the macronutrient (N, P, K, Ca and Mg) contents in potato plant responded positively to a deeper soil revolving caused by plowing, especially with moldboard plow.