201 resultados para SOIL PROPERTIES


Relevância:

70.00% 70.00%

Publicador:

Resumo:

ABSTRACT The feasibility of using sewage wastewater as a water and nutrient source for plants is an alternative to harness agricultural natural resource, observing its influence on the organic matter dynamics and soil energy. Our objective here was to evaluate the effects of applying different doses of effluent from a sewage treatment plant, in Janaúba – MG, Brazil, over the physical attributes of a soil grown with “Prata Anã” banana. From soil sample collection at depths of 0-20, 20-40, and 40-60 cm, we determined the following soil properties: soil density, total porosity, macroporosity, microporosity, organic matter, clay dispersed in water and stability of soil aggregate. The experimental design was in randomized blocks with four repetitions. Wastewater raising doses promoted increase in suspended solids, contributing to macroporosity reduction at 20-40 and 40-60 cm depths; as well as a reduction in organic matter within 0-20 cm layer. Clay dispersal was observed in the depths of 0-20 cm, being derived from an increase in sodium content. Concurrently, there was a reduction of soil aggregate stability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Natural regeneration and structure and their relationship to environmental variables were studied in three sections of a gallery forest, in Eastern Mato Grosso, Brazil (14º43′S and 52º21′W). The assumption was that natural regeneration is constrained by environmental determinants at all stages of development of the tree community. The objective was to analyse the forest structure and to verify the relationship between species distribution and abundance at different stages of regeneration and environmental variables. In each section, 47 contiguous (10x10m) permanent plots were established to sample trees (gbh≥15cm), following a systematic design. Seedlings (0.01 to 1m height), saplings (1.01 to 2m) and poles (from 2.01m height to gbh<15cm) were sampled in sub-plots of 1x1m, 2x2m and 5x5m, respectively. In each plot, soil properties, gaps projection, bamboos, rocky cover, declivity and depth of ground watertable were determined. The relationships between the environmental variables with trees and seedling communities were assessed by canonical correspondence analysis. In spite of the sections being near to each other, they presented large differences in floristics, structure and site conditions. The forest soil presented a low cation exchange capacity and a high level of Al saturation. The occurrence of bamboos and gaps and the depth of ground watertable limited the occurrence of poles and trees. The high degree of structural heterogeneity for each regeneration category was related primarily to a humidity gradient; but soil fertility (Ca+Mg) was also a determinant of seedling and sapling communities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In visceral leishmaniasis, phlebotomine vectors are targets for control measures. Understanding the ecosystem of the vectors is a prerequisite for creating these control measures. This study endeavours to delineate the suitable locations of Phlebotomus argentipes with relation to environmental characteristics between endemic and non-endemic districts in India. A cross-sectional survey was conducted on 25 villages in each district. Environmental data were obtained through remote sensing images and vector density was measured using a CDC light trap. Simple linear regression analysis was used to measure the association between climatic parameters and vector density. Using factor analysis, the relationship between land cover classes and P. argentipes density among the villages in both districts was investigated. The results of the regression analysis indicated that indoor temperature and relative humidity are the best predictors for P. argentipes distribution. Factor analysis confirmed breeding preferences for P. argentipes by landscape element. Minimum Normalised Difference Vegetation Index, marshy land and orchard/settlement produced high loading in an endemic region, whereas water bodies and dense forest were preferred in non-endemic sites. Soil properties between the two districts were studied and indicated that soil pH and moisture content is higher in endemic sites compared to non-endemic sites. The present study should be utilised to make critical decisions for vector surveillance and controlling Kala-azar disease vectors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The precise sampling of soil, biological or micro climatic attributes in tropical forests, which are characterized by a high diversity of species and complex spatial variability, is a difficult task. We found few basic studies to guide sampling procedures. The objective of this study was to define a sampling strategy and data analysis for some parameters frequently used in nutrient cycling studies, i. e., litter amount, total nutrient amounts in litter and its composition (Ca, Mg, Κ, Ν and P), and soil attributes at three depths (organic matter, Ρ content, cation exchange capacity and base saturation). A natural remnant forest in the West of São Paulo State (Brazil) was selected as study area and samples were collected in July, 1989. The total amount of litter and its total nutrient amounts had a high spatial independent variance. Conversely, the variance of litter composition was lower and the spatial dependency was peculiar to each nutrient. The sampling strategy for the estimation of litter amounts and the amount of nutrient in litter should be different than the sampling strategy for nutrient composition. For the estimation of litter amounts and the amount of nutrients in litter (related to quantity) a large number of randomly distributed determinations are needed. Otherwise, for the estimation of litter nutrient composition (related to quality) a smaller amount of spatially located samples should be analyzed. The determination of sampling for soil attributes differed according to the depth. Overall, surface samples (0-5 cm) showed high short distance spatial dependent variance, whereas, subsurface samples exhibited spatial dependency in longer distances. Short transects with sampling interval of 5-10 m are recommended for surface sampling. Subsurface samples must also be spatially located, but with transects or grids with longer distances between sampling points over the entire area. Composite soil samples would not provide a complete understanding of the relation between soil properties and surface dynamic processes or landscape aspects. Precise distribution of Ρ was difficult to estimate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dispersed information on water retention and availability in soils may be compiled in databases to generate pedotransfer functions. The objectives of this study were: to generate pedotransfer functions to estimate soil water retention based on easily measurable soil properties; to evaluate the efficiency of existing pedotransfer functions for different geographical regions for the estimation of water retention in soils of Rio Grande do Sul (RS); and to estimate plant-available water capacity based on soil particle-size distribution. Two databases were set up for soil properties, including water retention: one based on literature data (725 entries) and the other with soil data from an irrigation scheduling and management system (239 entries). From the literature database, pedotransfer functions were generated, nine pedofunctions available in the literature were evaluated and the plant-available water capacity was calculated. The coefficient of determination of some pedotransfer functions ranged from 0.56 to 0.66. Pedotransfer functions generated based on soils from other regions were not appropriate for estimating the water retention for RS soils. The plant-available water content varied with soil texture classes, from 0.089 kg kg-1 for the sand class to 0.191 kg kg-1 for the silty clay class. These variations were more related to sand and silt than to clay content. The soils with a greater silt/clay ratio, which were less weathered and with a greater quantity of smectite clay minerals, had high water retention and plant-available water capacity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The majority (60 %) of the soils in the Venezuelan Andes are Inceptisols, a large percentage of which are classified as Dystrustepts by the US Soil Taxonomy, Second Edition of 1999. Some of these soils were classified as Humitropepts (high organic - C-OC-soils) and Dystropepts by the Soil Taxonomy prior to 1999, but no equivalent large group was created for high-OC soils in the new Ustepts suborder. Dystrusepts developed on different materials, relief and vegetation. Their properties are closely related with the parent material. Soils developed on transported deposits or sediments have darker and thicker A horizons, a slightly acid reaction, greater CEC and OC contents than upland slope soils. Based on the previous classification into large groups (Humitropepts and Dystropepts) we found that: Humitropepts have a slightly less acid and higher values of CEC than Dystropepts. These properties or characteristics seem to be related to the fact that Humitropepts have a higher clay and OC content than the Dystropepts. Canonical discrimination analysis showed that the variables that discriminate the two great soil groups from each other are OC and silt. Data for Humitropepts are grouped around the OC vector (defining axis 3, principal component analysis), while Dystropepts are associated with the clay and sand vectors, with significant correlation. Given the importance of OC for soil properties, we propose the creation of a new large group named Humustepts for the order Inceptisol, suborder Ustepts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Brazilian System of Soil Classification (SiBCS) is a taxonomic system, open and in permanent construction, as new knowledge on Brazilian soils is obtained. The objective of this study was to characterize the chemical, physical, morphological, micro-morphological and mineralogical properties of four pedons of Oxisols in a highland toposequence in the upper Jequitinhonha Valley, emphasizing aspects of their genesis, classification and landscape development. The pedons occupy the following slope positions: summit - Red Oxisol (LV), mid slope (upper third) - Yellow-Red Oxisol (LVA), lower slope (middle third)- Yellow Oxisol (LA) and bottom of the valley (lowest third) - "Gray Oxisol" ("LAC"). These pedons were described and sampled for characterization in chemical and physical routine analyses. The total Fe, Al and Mn contents were determined by sulfuric attack and the Fe, Al and Mn oxides in dithionite-citrate-bicarbonate and oxalate extraction. The mineralogy of silicate clays was identified by X ray diffraction and the Fe oxides were detected by differential X ray diffraction. Total Ti, Ga and Zr contents were determined by X ray fluorescence spectrometry. The "LAC" is gray-colored and contains significant fragments of structure units in the form of a dense paste, characteristic of a gleysoil, in the horizons A and BA. All pedons are very clayey, dystrophic and have low contents of available P and a pH of around 5. The soil color was related to the Fe oxide content, which decreased along the slope. The decrease of crystalline and low- crystalline Fe along the slope confirmed the loss of Fe from the "LAC". Total Si increased along the slope and total Al remained constant. The clay fraction in all pedons was dominated by kaolinite and gibbsite. Hematite and goethite were identified in LV, low-intensity hematite and goethite in LVA, goethite in LA. In the "LAC", no hematite peaks and goethite were detected by differential X ray diffraction. The micro-morphology indicated prevalence of granular microstructure and porosity with complex stacking patterns.. The soil properties in the toposequence converged to a single soil class, the Oxisols, derived from the same source material. The landscape evolution and genesis of Oxisols of the highlands in the upper Jequitinhonha Valley are related to the evolution of the drainage system and the activity of excavating fauna.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Proctor test is time-consuming and requires sampling of several kilograms of soil. Proctor test parameters were predicted in Mollisols, Entisols and Vertisols of the Pampean region of Argentina under different management systems. They were estimated from a minimum number of readily available soil properties (soil texture, total organic C) and management (training data set; n = 73). The results were used to generate a soil compaction susceptibility model, which was subsequently validated using a second group of independent data (test data set; n = 24). Soil maximum bulk density was estimated as follows: Maximum bulk density (Mg m-3) = 1.4756 - 0.00599 total organic C (g kg-1) + 0.0000275 sand (g kg-1) + 0.0539 management. Management was equal to 0 for uncropped and untilled soils and 1 for conventionally tilled soils. The established models predicted the Proctor test parameters reasonably well, based on readily available soil properties. Tillage systems induced changes in the maximum bulk density regardless of total organic matter content or soil texture. The lower maximum apparent bulk density values under no-tillage require a revision of the relative compaction thresholds for different no-tillage crops.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The soil P sorption capacity has been studied for many years, but little attention has been paid to the rate of this process, which is relevant in the planning of phosphate fertilization. The purpose of this experiment was to assess kinetics of P sorption in 12 representative soil profiles of the State of Paraíba (Brazil), select the best data fitting among four equations and relate these coefficients to the soil properties. Samples of 12 soils with wide diversity of physical, chemical and mineralogical properties were agitated in a horizontal shaker, with 10 mmo L-1 CaCl2 solution containing 6 and 60 mg L-1 P, for periods of 5, 15, 30, 45, 60, 90, 120, 420, 720, 1,020, and 1,440 min. After each shaking period, the P concentration in the equilibrium solution was measured and three equations were fitted based on the Freundlich equation and one based on the Elovich equation, to determine which soil had the highest sorption rate (kinetics) and which soil properties correlated to this rate. The kinetics of P sorption in soils with high maximum P adsorption capacity (MPAC) was fast for 30 min at the lower initial P concentration (6 mg L-1). No difference was observed between soils at the higher initial P concentration (60 mg L-1). The P adsorption kinetics were positively correlated with clay content, MPAC and the amount of Al extracted with dithionite-citrate-bicarbonate. The data fitted well to Freundlich-based equations equation, whose coefficients can be used to predict P adsorption rates in soils.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Particle size distribution (PSD) in the soil profile is strongly related to erosion, deposition, and physical and chemical processes. Water cycling and plant growth are also affected by PSD. Material sedimented upstream of the dam constructions formed large areas of deposited farmland (DF) soils on the Chinese Loess Plateau (CLP), which has been the site of the most severe soil erosion in the world. Two DFs without tillage on the CLP were chosen to study the combined effect of erosion and check dams on PSD. Eighty-eight layers (each 10 cm thick) of filled deposited farmland (FDF) soils and 22 layers of silting deposited farmland (SDF) soils of each studied soil profile were collected and 932 soil samples were investigated using laser granulometry. The particle sizes were stratified in both DFs based on soil properties and erosion resistance. The obtained results of clay and silt fractions showed similar horizontal distribution, indicating parallel characteristics of erosion and deposition processes. Fine sand represented the largest fraction, suggesting the preferential detachment of this fraction. The most erodible range of particle sizes was 0.25-0.5 mm, followed by 0.2-0.25 mm in the studied soil profiles. The correlation between particle size and soil water contents tended to increase with increasing water contents in FDF. Due to the abundant shallow groundwater, the relationship between particle size and soil water content in SDF was lost. Further studies on PSD in the DF area are needed to enhance the conservation management of soil and water resources in this region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studies on water retention and availability are scarce for subtropical or humid temperate climate regions of the southern hemisphere. The aims of this study were to evaluate the relations of the soil physical, chemical, and mineralogical properties with water retention and availability for the generation and validation of continuous point pedotransfer functions (PTFs) for soils of the State of Santa Catarina (SC) in the South of Brazil. Horizons of 44 profiles were sampled in areas under different cover crops and regions of SC, to determine: field capacity (FC, 10 kPa), permanent wilting point (PWP, 1,500 kPa), available water content (AW, by difference), saturated hydraulic conductivity, bulk density, aggregate stability, particle size distribution (seven classes), organic matter content, and particle density. Chemical and mineralogical properties were obtained from the literature. Spearman's rank correlation analysis and path analysis were used in the statistical analyses. The point PTFs for estimation of FC, PWP and AW were generated for the soil surface and subsurface through multiple regression analysis, followed by robust regression analysis, using two sets of predictive variables. Soils with finer texture and/or greater organic matter content retain more moisture, and organic matter is the property that mainly controls the water availability to plants in soil surface horizons. Path analysis was useful in understanding the relationships between soil properties for FC, PWP and AW. The predictive power of the generated PTFs to estimate FC and PWP was good for all horizons, while AW was best estimated by more complex models with better prediction for the surface horizons of soils in Santa Catarina.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Compaction is an important problem in soils under pastoral land use, and can make livestock systems unsustainable. The objective of this research was to study the impact of soil compaction on yield and quality of palisade (UROCHLOA BRIZANTHA cv. Marandu). The experiment was conducted on an Oxisol in the State of Mato Grosso, Brazil. Treatments consisted of four levels of soil compaction: no compaction (NC), slight compaction (SC), medium compaction (MC) and high compaction (HC). The following soil properties were evaluated (layers 0-0.05 and 0.05-0.10 m): aggregate size distribution, bulk density (BD), macroporosity, microporosity, total porosity (TP), relative compaction (RC), and the characteristics of crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF) and dry matter yield (DMY) of the forage. Highly compacted soil had high BD and RC, and low TP (0-0.05 m). Both DMY and CP were affected by HC, and both were strongly related to BD. Higher DMY (6.96 Mg ha-1) and CP (7.8 %) were observed in the MC treatment (BD 1.57 Mg m-3 and RC 0.91 Mg m-3, in 0-0.05 m). A high BD of 1.57 Mg m-3 (0-0.05 m) did not inhibit plant growth. The N concentration in the palisade biomass differed significantly among compaction treatments, and was 8.72, 11.20, 12.48 and 10.98 g kg-1 in NC, SC, MC and HC treatments, respectively. Increase in DMY and CP at the MC level may be attributed to more absorption of N in this coarse-textured soil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Considering that information from soil reflectance spectra is underutilized in soil classification, this paper aimed to evaluate the relationship of soil physical, chemical properties and their spectra, to identify spectral patterns for soil classes, evaluate the use of numerical classification of profiles combined with spectral data for soil classification. We studied 20 soil profiles from the municipality of Piracicaba, State of São Paulo, Brazil, which were morphologically described and classified up to the 3rd category level of the Brazilian Soil Classification System (SiBCS). Subsequently, soil samples were collected from pedogenetic horizons and subjected to soil particle size and chemical analyses. Their Vis-NIR spectra were measured, followed by principal component analysis. Pearson's linear correlation coefficients were determined among the four principal components and the following soil properties: pH, organic matter, P, K, Ca, Mg, Al, CEC, base saturation, and Al saturation. We also carried out interpretation of the first three principal components and their relationships with soil classes defined by SiBCS. In addition, numerical classification of the profiles based on the OSACA algorithm was performed using spectral data as a basis. We determined the Normalized Mutual Information (NMI) and Uncertainty Coefficient (U). These coefficients represent the similarity between the numerical classification and the soil classes from SiBCS. Pearson's correlation coefficients were significant for the principal components when compared to sand, clay, Al content and soil color. Visual analysis of the principal component scores showed differences in the spectral behavior of the soil classes, mainly among Argissolos and the others soils. The NMI and U similarity coefficients showed values of 0.74 and 0.64, respectively, suggesting good similarity between the numerical and SiBCS classes. For example, numerical classification correctly distinguished Argissolos from Latossolos and Nitossolos. However, this mathematical technique was not able to distinguish Latossolos from Nitossolos Vermelho férricos, but the Cambissolos were well differentiated from other soil classes. The numerical technique proved to be effective and applicable to the soil classification process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soil physical quality is an important factor for the sustainability of agricultural systems. Thus, the aim of this study was to evaluate soil physical properties and soil organic carbon in a Typic Acrudox under an integrated crop-livestock-forest system. The experiment was carried out in Mato Grosso do Sul, Brazil. Treatments consisted of seven systems: integrated crop-livestock-forest, with 357 trees ha-1 and pasture height of 30 cm (CLF357-30); integrated crop-livestock-forest with 357 trees ha-1 and pasture height of 45 cm (CLF357-45); integrated crop-livestock-forest with 227 trees ha-1 and pasture height of 30 cm (CLF227-30); integrated crop-livestock-forest with 227 trees ha-1 and pasture height of 45 cm (CLF227-45); integrated crop-livestock with pasture height of 30 cm (CL30); integrated crop-livestock with pasture height of 45 cm (CL45) and native vegetation (NV). Soil properties were evaluated for the depths of 0-10 and 10-20 cm. All grazing treatments increased bulk density (r b) and penetration resistance (PR), and decreased total porosity (¦t) and macroporosity (¦ma), compared to NV. The values of r b (1.18-1.47 Mg m-3), ¦ma (0.14-0.17 m³ m-3) and PR (0.62-0.81 MPa) at the 0-10 cm depth were not restrictive to plant growth. The change in land use from NV to CL or CLF decreased soil organic carbon (SOC) and the soil organic carbon pool (SOCpool). All grazing treatments had a similar SOCpool at the 0-10 cm depth and were lower than that for NV (17.58 Mg ha-1).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over the past three decades, pedotransfer functions (PTFs) have been widely used by soil scientists to estimate soils properties in temperate regions in response to the lack of soil data for these regions. Several authors indicated that little effort has been dedicated to the prediction of soil properties in the humid tropics, where the need for soil property information is of even greater priority. The aim of this paper is to provide an up-to-date repository of past and recently published articles as well as papers from proceedings of events dealing with water-retention PTFs for soils of the humid tropics. Of the 35 publications found in the literature on PTFs for prediction of water retention of soils of the humid tropics, 91 % of the PTFs are based on an empirical approach, and only 9 % are based on a semi-physical approach. Of the empirical PTFs, 97 % are continuous, and 3 % (one) is a class PTF; of the empirical PTFs, 97 % are based on multiple linear and polynomial regression of n th order techniques, and 3 % (one) is based on the k-Nearest Neighbor approach; 84 % of the continuous PTFs are point-based, and 16 % are parameter-based; 97 % of the continuous PTFs are equation-based PTFs, and 3 % (one) is based on pattern recognition. Additionally, it was found that 26 % of the tropical water-retention PTFs were developed for soils in Brazil, 26 % for soils in India, 11 % for soils in other countries in America, and 11 % for soils in other countries in Africa.