245 resultados para Síntese de FSS
Resumo:
The application of microwave heating to organic synthesis is presented in a concise manner. Issues such as the history of the microwave oven, dielectric heating, reactions techniques (dry reactions, MORE chemistry), domestic ovens, microwave reactors, microwave effect and control of selectivities are discussed. Selected examples from the literature showed faster reactions, improved yields, less thermal degradations and cleaner reactions.
Resumo:
In this work we report the synthesis of some organolanthanide compounds which were identified as LnCl2Cp(PzA)2, Ln = Nd, Sm, Eu and Tb, Cp = cyclopentadienyl and PzA = pirazinamide, by elemental analyses, complexometric titration with EDTA, thermal analyses and IR spectra. Thermal analysis and infrared spectra indicated that the coordination of the pyrazinamide to the lanthanide ions was made by the O atom of the carbonyl group and by one or both N atoms of the pyrazinamide ring. This class of compound showed catalytic activity of ca. 4.0 to 6.4 kgPE molLn-1 h-1 bar-1, in ethylene polymerization, using methylaluminoxane as cocatalyst. The resulting polyethylene presented low crystallinity (20%).
Resumo:
In this work we obtained microporous and mesoporous silica membranes by sol-gel processing. Tetraethylortosilicate (TEOS) was used as precursor. Nitric acid was used as catalyst. In order to study the affect of N,N-dimethylformamide (NDF) as drying additive, we used a molar ratio TEOS/NDF of 1/3. The performance of N,N-dimethylformamide was evaluated through monolithicity measurements. The structural evolutions occurring during the sol-gel transition and in the interconnected network of the membranes during thermal treatment were monitored by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analyses and nitrogen sorption. We noted that in the presence of N,N-dimethylformamide, polymerization goes through a temporary stabilization of oligomers. The Si-O(H) bonds are stronger and belong to a more cross-linked structure for the N,N-dimethylformamide containing sol. The membranes obtained in the presence of N,N-dimethylformamide have larger surface area and its pore structure is in the range of mesoporous. The membranes obtained without additive have pore structure in the range of microporous.
Resumo:
Nickel nanoparticles supported on amorphous silica ceramic matrix were synthesized by the polymeric precursor method. The nanostructure was characterized by NMR, BET, XRD, SEM, TEM, and flame atomic absorption spectrometry techniques. It was observed a dependence of the crystallite size on the thermal annealing, under a N2 atmosphere. The materials presented a high catalytic activity and selectivity upon the beta-pinene hydrogenation reaction. The magnetic hystereses were also correlated with the morphology of the processed material.
Resumo:
Synthetic methods used for the preparation of azaindoles are described in this article. Applications in the preparation of bioactive molecules are given: synthesis of substituted 6-azaindoles as benzodiazepines receptor ligands, substituted 7-azaindoles as dopamine D4 ligands and preparation of an olivacine analogue.
Resumo:
The synthesis of the layered compound VO(PO4)(H2O)2 and its use to oxidize 2-butanol to the ketone 2-butanone, is proposed as an experiment to integrate the organic and inorganic experimental undergraduate chemistry courses, in an atempt to overcome the observed disrupture between organic and inorganic chemistry.
Resumo:
Several methodologies concerning the preparation of 2-aryl and 2-heteroarylcyclohexanones are presented. The use of these intermediates in the synthesis of chemically and biologically interesting organic compounds is also discussed.
Resumo:
A synthesis of artificial sweetener dulcin starting from nitrobenzene was elaborated for undergraduate organic laboratory course. Paracetamol and phenacetin, both physiologically active analgesic compounds, were also prepared as intermediates. Besides a large scope of discussion subjects related with organic synthesis, interesting lectures about analgesics and sweeteners may also be performed in this project. The advantage of this project is the adaptability according to the conditions offered by the course, i.e., convenience and/or availability of time and reagents.
Resumo:
The optimization of ferrate(VI) ion generation has been studied due to its favorable characteristics for application in several fields, including environmental quality control. The paper presents the best conditions for electrolytic generation of ferrate(VI) in alkaline media. An appropriate electrolyte was NaOH, 10 mol/L. Circulation of the electrolyte solution was important to avoid acidification close to the anode surface. An anode pre-cleaning with 10% HCl was more efficient than a cathodic pre-polarization. Among the distinct anode materials tested, pig iron showed the best performance, allowing up to 20 g/L of Na2FeO4, in 10 mol/L NaOH solution to be obtained, after 7 h of reactor operation, which is a concentration higher than those found in literature for alternative processes.
Resumo:
An experiment for the synthesis of isobutylene from tert-butanol dehydratation using oxalic acid as catalyst, followed by preparations of tert-butyl benzoate and tert-butyl cinnamate is described. The synthesis are simple, requiring two periods of 4 hours and are suitable for undergraduate organic chemistry experimental courses.
Resumo:
A layered matrix, alpha-VOPO4.2H2O was used as host species to produce a VOPO4.dimethylacetamide intercalation compound. The oxovanadium matrix and the synthesized hybrid were characterized by elemental analysis, infrared spectroscopy, thermogravimetry, X-ray diffractometry and SEM microscopy. The X-ray diffraction patterns show that the VOPO4.dimethylacetamide compound is amorphous, but can be turned lamellar after a solubilization-crystallization process. The SEM micrographs obtained for the VOPO4-dimethylacetamide hybrid matrix show that the microstructure of VOPO4.2H2O is changed after reaction, with a delamination of the oxovanadium matrix.
Resumo:
Several compounds related to helminthosporic acid (3) were synthesized via the [3+4] cycloaddition. The reaction of 3-hydroxymethyl-2-methylfuran (12) with 1,1,3,3-tetrabromo-4-methylpentan-2-one (13) resulted in 7-hydroxymethyl-4alpha-isopropyl-1alpha-methyl-8-oxabicyclo[3.2.1]oct-6-en-3-one (8) (37%) and 7-hydroxymethyl-2alpha-isopropyl-1alpha-methyl-8-oxabicyclo[3.2.1]oct-6-en-3-one (14) (12%), which were converted into 7-formyl-4alpha-isopropyl-1alpha-methyl-8-oxabicyclo[3.2.1]oct-6-en-3-one (16) (32% from 8) and 7-formyl-2alpha-isopropyl-1alpha-methyl-8-oxabicyclo[3.2.1]oct-6-en-3-one (18) (40% from 14), respectively. Reduction of (8) resulted in 7-hydroxymethyl-4alpha-isopropyl-1alpha-methyl-8-oxabicyclo[3.2.1]oct-6 -en-3alpha-ol (11) (63% from 8) and 7-hydroxymethyl-4alpha-isopropyl-1alpha-methyl-8-oxabicyclo[3.2.1]oct-6-en-3 beta-ol (15) (30% from 8). The 4alpha-isopropyl-1alpha-methyl-3-oxo-8-oxabicyclo[3.2.1]oct-6-en-7-oic acid (19) was obtained by oxidation of (16) (78%). The results of biological tests are described in details. The best result was observed for compound (15) that caused 76% inhibition on the root growth of D. tortuosum.
Resumo:
The objectives of this work are to supply a basic background on nanostructured materials and also to report about the obtaining of nanoparticles, mainly, tin dioxide nanocrystalline particles (obtained by using the polymeric precursor method) presenting a high stability against particle growth due to the usage of a metastable solid solution. The synthesis and growth of SnO2 nanoribbons by a carbothermal reduction process are also discussed.
Resumo:
The interest on the use of sucrose as raw material increased in the last years. In this work, the synthesis and applications of sucrose derivatives as esters, ethers, and other products are discussed in a concise manner aiming to presenting the sucrochemistry as a promising field in organic chemistry from a rather accessible, low-priced, ecological, and renewable source.
Resumo:
Polyaniline (PAni) is one of the most studied conducting polymer. It can be synthesized by two methods: electrochemical or chemical oxidation. The chemical oxidation is more adequate to produce large quantities of polymer. Regardless of the synthesis scale, the treatment of the residues before its final destination is very important and necessary because it contains toxic aniline derivatives (carcinogens in some cases), acids and inorganic salts, both with low toxicity. In this work we discuss the methods used to treat these residues and to eliminate and discard the toxic substances. These were extracted from the reaction residues by using activated coal and the pH of the residue was neutralized.