72 resultados para Reticulum endoplasmique


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obesity is a complex multifactorial disorder that is often associated with cardiovascular diseases. Research on experimental models has suggested that cardiac dysfunction in obesity might be related to alterations in myocardial intracellular calcium (Ca2+) handling. However, information about the expression of Ca2+-related genes that lead to this abnormality is scarce. We evaluated the effects of obesity induced by a high-fat diet in the expression of Ca2+-related genes, focusing the L-type Ca2+ channel (Cacna1c), sarcolemmal Na+/Ca2+ exchanger (NCX), sarcoplasmic reticulum Ca2+ ATPase (SERCA2a), ryanodine receptor (RyR2), and phospholamban (PLB) mRNA in rat myocardium. Male 30-day-old Wistar rats were fed a standard (control) or high-fat diet (obese) for 15 weeks. Obesity was defined as increased percent of body fat in carcass. The mRNA expression of Ca2+-related genes in the left ventricle was measured by RT-PCR. Compared with control rats, the obese rats had increased percent of body fat, area under the curve for glucose, and leptin and insulin plasma concentrations. Obesity also caused an increase in the levels of SERCA2a, RyR2 and PLB mRNA (P < 0.05) but did not modify the mRNA levels of Cacna1c and NCX. These findings show that obesity induced by high-fat diet causes cardiac upregulation of Ca2+ transport_related genes in the sarcoplasmic reticulum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lead (Pb2+) poisoning causes hypertension, but little is known regarding its acute effects on cardiac contractility. To evaluate these effects, force was measured in right ventricular strips that were contracting isometrically in 45 male Wistar rats (250-300 g) before and after the addition of increasing concentrations of lead acetate (3, 7, 10, 30, 70, 100, and 300 µM) to the bath. Changes in rate of stimulation (0.1-1.5 Hz), relative potentiation after pauses of 15, 30, and 60 s, effect of Ca2+ concentration (0.62, 1.25, and 2.5 mM), and the effect of isoproterenol (20 ng/mL) were determined before and after the addition of 100 µM Pb2+. Effects on contractile proteins were evaluated after caffeine treatment using tetanic stimulation (10 Hz) and measuring the activity of the myosin ATPase. Pb2+ produced concentration-dependent force reduction, significant at concentrations greater than 30 µM. The force developed in response to increasing rates of stimulation became smaller at 0.5 and 0.8 Hz. Relative potentiation increased after 100 µM Pb2+ treatment. Extracellular Ca2+ increment and isoproterenol administration increased force development but after 100 µM Pb2+ treatment the force was significantly reduced suggesting an effect of the metal on the sarcolemmal Ca2+ influx. Concentration of 100 µM Pb2+ also reduced the peak and plateau force of tetanic contractions and reduced the activity of the myosin ATPase. Results showed that acute Pb2+ administration, although not affecting the sarcoplasmic reticulum activity, produces a concentration-dependent negative inotropic effect and reduces myosin ATPase activity. Results suggest that acute lead administration reduced myocardial contractility by reducing sarcolemmal calcium influx and the myosin ATPase activity. These results also suggest that lead exposure is hazardous and has toxicological consequences affecting cardiac muscle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pancreatic acinar cell is a classical model for studies of secretion and signal transduction mechanisms. Because of the extensive endoplasmic reticulum and the large granular compartment, it has been possible - by direct measurements - to obtain considerable insights into intracellular Ca2+ handling under both normal and pathological conditions. Recent studies have also revealed important characteristics of stimulus-secretion coupling mechanisms in isolated human pancreatic acinar cells. The acinar cells are potentially dangerous because of the high intra-granular concentration of proteases, which become inappropriately activated in the human disease acute pancreatitis. This disease is due to toxic Ca2+ signals generated by excessive liberation of Ca2+ from both the endoplasmic reticulum and the secretory granules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malignant hyperthermia (MH) is a pharmacogenetic disease triggered in susceptible individuals by the administration of volatile halogenated anesthetics and/or succinylcholine, leading to the development of a hypermetabolic crisis, which is caused by abnormal release of Ca2+ from the sarcoplasmic reticulum, through the Ca2+ release channel ryanodine receptor 1 (RyR1). Mutations in the RYR1 gene are associated with MH in the majority of susceptible families. Genetic screening of a 5-generation Brazilian family with a history of MH-related deaths and a previous MH diagnosis by the caffeine halothane contracture test (CHCT) in some individuals was performed using restriction and sequencing analysis. A novel missense mutation, Gly4935Ser, was found in an important functional and conserved locus of this gene, the transmembrane region of RyR1. In this family, 2 MH-susceptible individuals previously diagnosed with CHCT carry this novel mutation and another 24 not previously diagnosed members also carry it. However, this same mutation was not found in another MH-susceptible individual whose CHCT was positive to the test with caffeine but not to the test with halothane. None of the 5 MH normal individuals of the family, previously diagnosed by CHCT, carry this mutation, nor do 100 controls from control Brazilian and USA populations. The Gly4932Ser variant is a candidate mutation for MH, based on its co-segregation with disease phenotype, absence among controls and its location within the protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The regulatory function of α1B-adrenoceptors in mammalian heart homeostasis is controversial. The objective of the present study was to characterize the expression/activity of key proteins implicated in cardiac calcium handling (Na+/K+-ATPase and Ca2+-ATPases) and growth (ERK1/2, JNK1/2 and p38) in mice with cardiac-selective overexpression of constitutively active mutant α1B-adrenoceptor (CAMα1B-AR), which present a mild cardiac hypertrophy phenotype. Immunoblot assays showed that myocardial plasma membrane Ca2+-ATPase (PMCA) expression was increased by 30% in CAMα1B-AR mice (N = 6, P < 0.05), although there was no change in sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2) expression. Moreover, total Ca2+-ATPase activity was not modified, but a significant increase in the activity of the thapsigargin-resistant (PMCA) to thapsigargin-sensitive (SERCA) ratio was detected. Neither Na+/K+-ATPase activity nor the expression of α1 and α2 subunit isoforms was changed in CAMα1B-AR mouse hearts. Moreover, immunoblot assays did not provide evidence for an enhanced activation of the three mitogen-activated protein kinases studied in this stage of hypertrophy. Therefore, these findings indicate that chronic cardiac α1B-AR activation in vivo led to mild hypertrophy devoid of significant signs of adaptive modifications concerning primary intracellular calcium control and growth-related proteins, suggesting a minor pathophysiological role of this adrenergic receptor in mouse heart at this stage of development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ouabain, an endogenous digitalis compound, has been detected in nanomolar concentrations in the plasma of several mammals and is associated with the development of hypertension. In addition, plasma ouabain is increased in several hypertension models, and the acute or chronic administration of ouabain increases blood pressure in rodents. These results suggest a possible association between ouabain and the genesis or development and maintenance of arterial hypertension. One explanation for this association is that ouabain binds to the α-subunit of the Na+ pump, inhibiting its activity. Inhibition of this pump increases intracellular Na+, which reduces the activity of the sarcolemmal Na+/Ca2+ exchanger and thereby reduces Ca2+ extrusion. Consequently, intracellular Ca2+ increases and is taken up by the sarcoplasmic reticulum, which, upon activation, releases more calcium and increases the vascular smooth muscle tone. In fact, acute treatment with ouabain enhances the vascular reactivity to vasopressor agents, increases the release of norepinephrine from the perivascular adrenergic nerve endings and promotes increases in the activity of endothelial angiotensin-converting enzyme and the local synthesis of angiotensin II in the tail vascular bed. Additionally, the hypertension induced by ouabain has been associated with central mechanisms that increase sympathetic tone, subsequent to the activation of the cerebral renin-angiotensin system. Thus, the association with peripheral mechanisms and central mechanisms, mainly involving the renin-angiotensin system, may contribute to the acute effects of ouabain-induced elevation of arterial blood pressure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly efficient mechanisms regulate intracellular calcium (Ca2+) levels. The recent discovery of new components linking intracellular Ca2+ stores to plasma membrane Ca2+ entry channels has brought new insight into the understanding of Ca2+ homeostasis. Stromal interaction molecule 1 (STIM1) was identified as a Ca2+ sensor essential for Ca2+ store depletion-triggered Ca2+ influx. Orai1 was recognized as being an essential component for the Ca2+ release-activated Ca2+ (CRAC) channel. Together, these proteins participate in store-operated Ca2+ channel function. Defective regulation of intracellular Ca2+ is a hallmark of several diseases. In this review, we focus on Ca2+ regulation by the STIM1/Orai1 pathway and review evidence that implicates STIM1/Orai1 in several pathological conditions including cardiovascular and pulmonary diseases, among others.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the effects of the acute administration of small doses of lead over time on hemodynamic parameters in anesthetized rats to determine if myocardial contractility changes are dependent or not on the development of hypertension. Male Wistar rats received 320 µg/kg lead acetateiv once, and their hemodynamic parameters were measured for 2 h. Cardiac contractility was evaluated in vitro using left ventricular papillary muscles as were Na+,K+-ATPase and myosin Ca2+-ATPase activities. Lead increased left- (control: 112 ± 3.7 vs lead: 129 ± 3.2 mmHg) and right-ventricular systolic pressures (control: 28 ± 1.2vs lead: 34 ± 1.2 mmHg) significantly without modifying heart rate. Papillary muscles were exposed to 8 µM lead acetate and evaluated 60 min later. Isometric contractions increased (control: 0.546 ± 0.07 vs lead: 0.608 ± 0.06 g/mg) and time to peak tension decreased (control: 268 ± 13vs lead: 227 ± 5.58 ms), but relaxation time was unchanged. Post-pause potentiation was similar between groups (n = 6 per group), suggesting no change in sarcoplasmic reticulum activity, evaluated indirectly by this protocol. After 1-h exposure to lead acetate, the papillary muscles became hyperactive in response to a β-adrenergic agonist (10 µM isoproterenol). In addition, post-rest contractions decreased, suggesting a reduction in sarcolemmal calcium influx. The heart samples treated with 8 µM lead acetate presented increased Na+,K+-ATPase (approximately 140%, P < 0.05 for control vs lead) and myosin ATPase (approximately 30%, P < 0.05 for control vs lead) activity. Our results indicated that acute exposure to low lead concentrations produces direct positive inotropic and lusitropic effects on myocardial contractility and increases the right and left ventricular systolic pressure, thus potentially contributing to the early development of hypertension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ca2+ pumps are important players in smooth muscle contraction. Nevertheless, little information is available about these pumps in the vas deferens. We have determined which subtype of sarco(endo)plasmic reticulum Ca2+-ATPase isoform (SERCA) is expressed in rat vas deferens (RVD) and its modulation by calmodulin (CaM)-dependent mechanisms. The thapsigargin-sensitive Ca2+-ATPase from a membrane fraction containing the highest SERCA levels in the RVD homogenate has the same molecular mass (∼115 kDa) as that of SERCA2 from the rat cerebellum. It has a very high affinity for Ca2+ (Ca0.5 = 780 nM) and a low sensitivity to vanadate (IC50 = 41 µM). These facts indicate that SERCA2 is present in the RVD. Immunoblotting for CaM and Ca2+/calmodulin-dependent protein kinase II (CaMKII) showed the expression of these two regulatory proteins. Ca2+ and CaM increased serine-phosphorylated residues of the 115-kDa protein, indicating the involvement of CaMKII in the regulatory phosphorylation of SERCA2. Phosphorylation is accompanied by an 8-fold increase of thapsigargin-sensitive Ca2+ accumulation in the lumen of vesicles derived from these membranes. These data establish that SERCA2 in the RVD is modulated by Ca2+ and CaM, possibly via CaMKII, in a process that results in stimulation of Ca2+ pumping activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Frogs have been used as an alternative model to study pain mechanisms. Since we did not find any reports on the effects of sciatic nerve transection (SNT) on the ultrastructure and pattern of metabolic substances in frog dorsal root ganglion (DRG) cells, in the present study, 18 adult male frogs (Rana catesbeiana) were divided into three experimental groups: naive (frogs not subjected to surgical manipulation), sham (frogs in which all surgical procedures to expose the sciatic nerve were used except transection of the nerve), and SNT (frogs in which the sciatic nerve was exposed and transected). After 3 days, the bilateral DRG of the sciatic nerve was collected and used for transmission electron microscopy. Immunohistochemistry was used to detect reactivity for glucose transporter (Glut) types 1 and 3, tyrosine hydroxylase, serotonin and c-Fos, as well as nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-diaphorase). SNT induced more mitochondria with vacuolation in neurons, satellite glial cells (SGCs) with more cytoplasmic extensions emerging from cell bodies, as well as more ribosomes, rough endoplasmic reticulum, intermediate filaments and mitochondria. c-Fos immunoreactivity was found in neuronal nuclei. More neurons and SGCs surrounded by tyrosine hydroxylase-like immunoreactivity were found. No change occurred in serotonin- and Glut1- and Glut3-like immunoreactivity. NADPH-diaphorase occurred in more neurons and SGCs. No sign of SGC proliferation was observed. Since the changes of frog DRG in response to nerve injury are similar to those of mammals, frogs should be a valid experimental model for the study of the effects of SNT, a condition that still has many unanswered questions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In cardiac and skeletal muscle, eugenol (μM range) blocks excitation-contraction coupling. In skeletal muscle, however, larger doses of eugenol (mM range) induce calcium release from the sarcoplasmic reticulum. The effects of eugenol are therefore dependent on its concentration. In this study, we evaluated the effects of eugenol on the contractility of isolated, quiescent atrial trabeculae from male Wistar rats (250-300 g; n=131) and measured atrial ATP content. Eugenol (1, 3, 5, 7, and 10 mM) increased resting tension in a dose-dependent manner. Ryanodine [100 µM; a specific ryanodine receptor (RyR) blocker] and procaine (30 mM; a nonspecific RyR blocker) did not block the increased resting tension induced by eugenol regardless of whether extracellular calcium was present. The myosin-specific inhibitor 2,3-butanedione monoxime (BDM), however, reversed the increase in resting tension induced by eugenol. In Triton-skinned atrial trabeculae, in which all membranes were solubilized, eugenol did not change resting tension, maximum force produced, or the force vs pCa relationship (pCa=-log [Ca2+]). Given that eugenol reduced ATP concentration, the increase in resting tension observed in this study may have resulted from cooperative activation of cardiac thin filaments by strongly attached cross-bridges (rigor state).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In cardiomyocytes, calcium (Ca2+) release units comprise clusters of intracellular Ca2+ release channels located on the sarcoplasmic reticulum, and hypertension is well established as a cause of defects in calcium release unit function. Our objective was to determine whether endurance exercise training could attenuate the deleterious effects of hypertension on calcium release unit components and Ca2+ sparks in left ventricular myocytes of spontaneously hypertensive rats. Male Wistar and spontaneously hypertensive rats (4 months of age) were divided into 4 groups: normotensive (NC) and hypertensive control (HC), and normotensive (NT) and hypertensive trained (HT) animals (7 rats per group). NC and HC rats were submitted to a low-intensity treadmill running protocol (5 days/week, 1 h/day, 0% grade, and 50-60% of maximal running speed) for 8 weeks. Gene expression of the ryanodine receptor type 2 (RyR2) and FK506 binding protein (FKBP12.6) increased (270%) and decreased (88%), respectively, in HC compared to NC rats. Endurance exercise training reversed these changes by reducing RyR2 (230%) and normalizing FKBP12.6 gene expression (112%). Hypertension also increased the frequency of Ca2+ sparks (HC=7.61±0.26 vs NC=4.79±0.19 per 100 µm/s) and decreased its amplitude (HC=0.260±0.08 vs NC=0.324±0.10 ΔF/F0), full width at half-maximum amplitude (HC=1.05±0.08 vs NC=1.26±0.01 µm), total duration (HC=11.51±0.12 vs NC=14.97±0.24 ms), time to peak (HC=4.84±0.06 vs NC=6.31±0.14 ms), and time constant of decay (HC=8.68±0.12 vs NC=10.21±0.22 ms). These changes were partially reversed in HT rats (frequency of Ca2+ sparks=6.26±0.19 µm/s, amplitude=0.282±0.10 ΔF/F0, full width at half-maximum amplitude=1.14±0.01 µm, total duration=13.34±0.17 ms, time to peak=5.43±0.08 ms, and time constant of decay=9.43±0.15 ms). Endurance exercise training attenuated the deleterious effects of hypertension on calcium release units of left ventricular myocytes.