84 resultados para Refinery sludge
Resumo:
This work shows results on the characterization, by liquid chromatography coupled to high resolution tandem mass spectrometry (LC-IT-TOF-MS) with electrospray ionization, of organic compounds present in raw and treated effluents from a combined sewage treatment systems (upflow anaerobic sludge blanket-trickling filter). The sewage samples were prepared by C18 solid phase extraction and the spectra obtained from the various extracts were submitted to principal component analysis to evaluate their pattern and identify the major deprotonated species. Some target compounds were submitted to semiquantitative analysis, using phenolphtalein as internal standard. The results showed the anaerobic step had little impact on the removal of anionic surfactants (LAS), fatty acids, and some contaminantes such as bisphenol A and bezafibrate, whereas the aerobic post-treatment was very efficient in removing these organics.
Resumo:
A biofuel was prepared from acid aqueous fraction (pH = 2) of bio-oil produced by fast pyrolysis (Bioware Technology) of lignocellulosic biomass (sugar cane residue) and tested in blends (2, 5, 10 e 20% v/v) with gasoline type C (common) marketed in Brazil. The specification tests made in the Refinery President Getúlio Vargas (PETROBRAS) showed increasing in the octane number (MON) and antiknock index (AKI) with reduction in the residue generation during the combustion. The physicochemical characteristics of the biofuel were similar that combustible alcohol allowing its use as gasoline additive.
Resumo:
This work discusses an analytical procedure for analysis of sulfur compounds in treated petroleum refinery gaseous effluents using a sulfur chemiluminescence detector with dual plasma burner (SCD-DP). Calibration was accomplished by using standards and gaseous streams of known concentration of sulfur compounds. The response factors agree with the calibration table of ASTM standard D 5504 (2008). The detection range for sulfur compounds is in μg m-3. The analytical procedure allowed the construction of a chromatographic chart of sulfur compounds present in several refinery gaseous effluents. SO2 was the most difficult compound to be determined because of its high reactivity.
Resumo:
In this work, TiO2 photocatalysis was used to disinfect domestic wastewaters previously treated by different biological treatment systems: Upward-flow Anaerobic Sludge Blanket (UASB), facultative pond, and duckweed pond. The microorganisms monitored were E. coli, total coliforms, Shigella species, and Salmonella species. Photocatalytic experiments were carried out using two light sources: a solar simulator (UV intensity: 68-70 W m-2) and black-light lamps (BLL UV intensity: 17-20 W m-2). Samples were taken after each treatment stage. Results indicate that bacterial photocatalytic inactivation is affected by characteristics of the effluent, including turbidity, concentration of organic matter, and bacterial concentration, which depend of the type of biological pretreatment previously used.
Resumo:
This research aims to monitor the humification process of domestic sewage sludge resulted from the vermicomposting, evaluating, also, the possibility of using the final product (vermicompost) in agricultural soils. The monitored chemical variables during the 90 days of vermicomposting were: humidity rate, organic matter content, nitrogen and phosphorus content, pathogenic organisms concentration, total organic carbon, acidity, CEC, C/N ratio, CEC/TOC ratio, and humic and fulvic acids content. The change in these variables during the vermicomposting process showed that this technique is effective for use in the maturation of the residue.
Resumo:
An alternative for landfill leachate treatment are advanced oxidation processes by Fenton's reagent (AOP/Fenton). In this context, the aim of this paper was to evaluate, in a bench scale, the treatability of leachate pós-AOP/Fenton characterizing the supernatant and the sludge generated separately. Observed in optimal conditions, high removal efficiency of COD (76.7%), real color (76.4%) and humic substances (50%). Organic compounds were detected in the sludge (2.465 mg COD L-1) and high concentration of iron (1.757 mg L-1) as was expected. Finally, the sludge generated showed low settling hindering their separation by sedimentation (SVI = 321 mL g-1).
Resumo:
Recycling of paper in industrial scale has become an established practice worldwide. In this work, organic compositions of three different kinds of sludge generated in recycle paper industry were studied, and the incorporation of one of those sludge in briket was also investigated. The characterization of organic compounds in sludge samples and briket was performed using Gas Chromatography coupled with Mass Spectrometry after a Soxhlet extraction. Different chemical classes were identified in each type of sludge, but just the sludge composed by cellulose residue did not presented polyaromatic hydrocarbons. Four formulations of sludge incorporated with charcoal for briket production were evaluated.
Resumo:
Ceramic foams were produced from a sludge generated in the aluminum anodizing process by using an industrial polyurethane foam (replication method) with open cell sizes of 10 ± 5 ppi (porosity = 97%) which were impregnated with suspensions containing 50-61 wt.% alumina, 1 wt.% citric acid, 6 wt.% bentonite and fired at 1600 ºC for 2 h. The aluminum anodizing sludge shows a high alumina content (87.5 wt.%) and a low particle size (~1.7 mm) after calcination and milling. The obtained filters show porosity of approximately 70%, filtration capability (mass water flow) of 1.7 kg/s and mechanical strength under compression of 2.40 MPa.
Resumo:
Electrocoagulation/flotation process was applied to treat biodiesel wastewater using aluminium electrodes. Firstly, a literature survey was conducted to choose the process variables and then, operational parameters including initial pH, electrode distance and reaction time were tested. Experimental results showed the best parameter that can be used in a factorial design for further studies. The results indicate that electrocoagulation/flotation is very efficient to reduce oil and grease, the effluent was very clear after treatment and small amount of sludge was produced.
Resumo:
This work aimed to access the contents and chemical forms and to estimate mobility and availability of cooper and zinc in samples from two soils (Haplortox and Paleudult) previously treated with doses of sewage sludge (SS) and municipal solid waste compost (MSWC), besides a control treatment. Largest percentages of Cu and Zn were determined in the organic matter fraction. Zn showed higher percentages of soluble and exchangeable fractions than Cu. Treatments with SS showed higher potential of Cu and Zn availability. Modifications in soil attributes due to residue application affected metal mobility and availability indexes.
Resumo:
In this work, cracking experiments were performed to carry out the thermal conversion of the mixture of used frying oil and textile stamping sludge in continuous reactor. The textile stamping sludge was used to catalyze the reaction of thermal cracking. The physical and chemical properties of the oil produced were analyzed. Among the results of this analysis the level of acidity in the range of 12 mg KOH/g stands out. Low levels of acidity as this particular mean better quality oil. In this regard it is important that further researches on processes of conversion of residual oil occur.
Resumo:
The objective of this study was to evaluate the sorption and leaching of thiamethoxam in dystrophic Red-Yellow Latosol (LVAd), dystroferric Red Latosol (LVdf) and Red-Yellow Argisol (PVAd) with coffee under the effect of sewage sludge doses. There was thiamethoxam sorption decreasing at higher doses of sewage sludge in LVAd and LVdf. In the PVAd, sorption was higher in samples that received the highest dose of sewage sludge. At 150 days after the application of thiamethoxam, the compound began to be detected in the effluent, in all soils. Dissolved organic carbon had no influence on the thiamethoxam leaching.
Resumo:
Zn availability in Red Latossol (Rhodic Ferralsol) of different pH amended with different rates of sewage sludge was studied by the isotopic 65Zn L value method. Soil chemical properties were found to be altered by SS addition. Zn concentration and Zn derived from SS (ZnpfSS) in plant, and Zn phytoavailability (L value), were increased with increasing SS rates. The linear correlation coefficient of plant Zn with SS rates and with L value was significant at 1% probability. The L value proved an efficient method for predicting Zn phytoavailability in sewage sludge-amended soil with different pH under the soil conditions studied.
Resumo:
Zn-EDTA degradabilty by catechol-driven Fenton reaction was studied. Response surface methodology central composite design was employed to maximize this complex degradation. Theoretical speciation calculations were in good agreement with the experimental results. Fenton and Fenton type treatments are typically thought to be applicable only in the highly acidic range, representing a major operational constraint. Interestingly, at optimized concentrations, this CAT-driven Fenton reaction at pH 5.5 achieved 100% Zn-EDTA degradation; 60% COD and 17% TOC removals, using tiny amounts of CAT (50 µM), Fe(III) (445 µM) and H2O2 (20 mM) with no evident ferric sludge.
Resumo:
Nitrous oxide (N2O) emissions were measured monthly from January to June 2010 in the aeration tank of a wastewater treatment plant (WWTP) in Southeast Brazil. Emissions were lower in summer than winter and were positively related with influent ammonium (NH4+) concentration. The average N2O emission was 1.11 kg N day-1 corresponding to 0.02% of the influent total nitrogen load. The average emission factor calculated for the population served was 2.5 lower than that proposed by the Intergovernmental Panel on Climate Change (IPCC) for inventories of N2O emissions from WWTPs with controlled nitrification and denitrification processes.