104 resultados para REMODELING


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ca2+-modulated, dimeric proteins of the EF-hand (helix-loop-helix) type, S100A1 and S100B, that have been shown to inhibit microtubule (MT) protein assembly and to promote MT disassembly, interact with the type III intermediate filament (IF) subunits, desmin and glial fibrillary acidic protein (GFAP), with a stoichiometry of 2 mol of IF subunit/mol of S100A1 or S100B dimer and an affinity of 0.5-1.0 µM in the presence of a few micromolar concentrations of Ca2+. Binding of S100A1 and S100B results in inhibition of desmin and GFAP assemblies into IFs and stimulation of the disassembly of preformed desmin and GFAP IFs. S100A1 and S100B interact with a stretch of residues in the N-terminal (head) domain of desmin and GFAP, thereby blocking the head-to-tail process of IF elongation. The C-terminal extension of S100A1 (and, likely, S100B) represents a critical part of the site that recognizes desmin and GFAP. S100B is localized to IFs within cells, suggesting that it might have a role in remodeling IFs upon elevation of cytosolic Ca2+ concentration by avoiding excess IF assembly and/or promoting IF disassembly in vivo. S100A1, that is not localized to IFs, might also play a role in the regulation of IF dynamics by binding to and sequestering unassembled IF subunits. Together, these observations suggest that S100A1 and S100B may be regarded as Ca2+-dependent regulators of the state of assembly of two important elements of the cytoskeleton, IFs and MTs, and, potentially, of MT- and IF-based activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effective pump function of the heart depends on the precise control of spatial and temporal patterns of electrical activation. Accordingly, the distribution and function of gap junction channels are important determinants of the conduction properties of myocardium and undoubtedly play other roles in intercellular communication crucial to normal cardiac function. Recent advances have begun to elucidate mechanisms by which the heart regulates intercellular electrical coupling at gap junctions in response to stress or injury. Although responses to increased load or injury are generally adaptive in nature, remodeling of intercellular junctions under conditions of severe stress creates anatomic substrates conducive to the development of lethal ventricular arrhythmias. Potential mechanisms controlling the level of intercellular communication in the heart include regulation of connexin turnover dynamics and phosphorylation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Angiotensin-converting enzyme (ACE) plays a central role in cardiac remodeling associated with pathological conditions such as myocardial infarction. The existence of different cell types in the heart expressing components of the renin-angiotensin system makes it difficult to evaluate their relative role under physiological and pathological conditions. Since myocytes are the predominant cellular constituent of the heart by mass, in the present study we studied the effects of glucocorticoids on ACE activity using well-defined cultures of neonatal rat cardiac myocytes. Under steady-state conditions, ACE activity was present at very low levels, but after dexamethasone treatment ACE activity increased significantly (100 nmol/l after 24 h) in a time-dependent fashion. These results demonstrate the influence of dexamethasone on ACE activity in rat cardiac myocytes. This is consistent with the idea that ACE activation occurs under stress conditions, such as myocardial infarction, in which glucocorticoid levels may increase approximately 50-fold.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mechanisms underlying risk associated with hypertensive heart disease (HHD) and left ventricular hypertrophy (LVH) are discussed in this report and provide a rationale for understanding this very common and important cause of death from hypertension and its complications. Emphasized are impaired coronary hemodynamics, endothelial dysfunction, and ventricular fibrosis from increased collagen deposition intramurally and perivascularly. Each is exacerbated by aging and, perhaps, also by increased dietary salt intake. These functional and structural changes promote further endothelial dysfunction, altered coronary hemodynamics, and diastolic as well as systolic ventricular contractile function in HHD. The clinical endpoints of HHD include angina pectoris (with or without atherosclerosis of the epicardial coronary arteries), myocardial infarction, cardiac failure, lethal dysrhythmias, and sudden death. The major concept to be derived from these alterations is that not all that is clinically recognized as LVH is true myocytic hypertrophy and structural remodeling. Other major co-morbid changes occur that serve to increase cardiovascular risk including impaired coronary hemodynamics, endothelial dysfunction, and ventricular fibrosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well known that the responses to vasoactive kinin peptides are mediated through the activation of two receptors termed bradykinin receptor B1 (B1R) and B2 (B2R). The physiologically prominent B2R subtype has certainly been the subject of more intensive efforts in structure-function studies and physiological investigations. However, the B1R activated by a class of kinin metabolites has emerged as an important subject of investigation within the study of the kallikrein-kinin system (KKS). Its inducible character under stress and tissue injury is therefore a field of major interest. Although the KKS has been associated with cardiovascular regulation since its discovery at the beginning of the last century, less is known about the B1R and B2R regulation in cardiovascular diseases like hypertension, myocardial infarction (MI) and their complications. This mini-review will summarize our findings on B1R and B2R regulation after induction of MI using a rat model. We will develop the hypothesis that differences in the expression of these receptors may be associated with a dual pathway of the KKS in the complex mechanisms of myocardial remodeling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite extensive genetic and immunological research, the complex etiology and pathogenesis of type I diabetes remains unresolved. During the last few years, our attention has been focused on factors such as abnormalities of islet function and/or microenvironment, that could interact with immune partners in the spontaneous model of the disease, the non-obese diabetic (NOD) mouse. Intriguingly, the first anomalies that we noted in NOD mice, compared to control strains, are already present at birth and consist of 1) higher numbers of paradoxically hyperactive ß cells, assessed by in situ preproinsulin II expression; 2) high percentages of immature islets, representing islet neogenesis related to neonatal ß-cell hyperactivity and suggestive of in utero ß-cell stimulation; 3) elevated levels of some types of antigen-presenting cells and FasL+ cells, and 4) abnormalities of extracellular matrix (ECM) protein expression. However, the colocalization in all control mouse strains studied of fibroblast-like cells (anti-TR-7 labeling), some ECM proteins (particularly, fibronectin and collagen I), antigen-presenting cells and a few FasL+ cells at the periphery of islets undergoing neogenesis suggests that remodeling phenomena that normally take place during postnatal pancreas development could be disturbed in NOD mice. These data show that from birth onwards there is an intricate relationship between endocrine and immune events in the NOD mouse. They also suggest that tissue-specific autoimmune reactions could arise from developmental phenomena taking place during fetal life in which ECM-immune cell interaction(s) may play a key role.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extracellular matrix (ECM) molecules play important roles in the pathobiology of the major human central nervous system (CNS) inflammatory/demyelinating disease multiple sclerosis (MS). This mini-review highlights some recent work on CNS endothelial cell interactions with vascular basement membrane ECM as part of the cellular immune response, and roles for white matter ECM molecules in demyelination and remyelination in MS lesions. Recent basic and clinical investigations of MS emphasize axonal injury, not only in chronic MS plaques, but also in acute lesions; progressive axonal degeneration in normal-appearing white matter also may contribute to brain and spinal cord atrophy in MS patients. Remodeling of the interstitial white matter ECM molecules that affect axon regeneration, however, is incompletely characterized. Our ongoing immunohistochemical studies demonstrate enhanced ECM versican, a neurite and axon growth-inhibiting white matter ECM proteoglycan, and dermatan sulfate proteoglycans at the edges of inflammatory MS lesions. This suggests that enhanced proteoglycan deposition in the ECM and axonal growth inhibition may occur early and are involved in expansion of active lesions. Decreased ECM proteoglycans and their phagocytosis by macrophages along with myelin in plaque centers imply that there is "injury" to the ECM itself. These results indicate that white matter ECM proteoglycan alterations are integral to MS pathology at all disease stages and that they contribute to a CNS ECM that is inhospitable to axon regrowth/regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hyaluronan is an important connective tissue glycosaminoglycan. Elevated hyaluronan biosynthesis is a common feature during tissue remodeling under both physiological and pathological conditions. Through its interactions with hyaladherins, hyaluronan affects several cellular functions such as cell migration and differentiation. The activities of hyaluronan-synthesizing and -degrading enzymes have been shown to be regulated in response to growth factors. During tumor progression hyaluronan stimulates tumor cell growth and invasiveness. Thus, elucidation of the molecular mechanisms which regulate the activities of hyaluronan-synthesizing and -degrading enzymes during tumor progression is highly desired.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiac structures, function, and myocardial contractility are affected by food restriction (FR). There are few experiments associating undernutrition with hypertension. The aim of the present study was to analyze the effects of FR on the cardiac response to hypertension in a genetic model of hypertension, the spontaneously hypertensive rat (SHR). Five-month-old SHR were fed a control or a calorie-restricted diet for 90 days. Global left ventricle (LV) systolic function was evaluated in vivo by transthoracic echocardiogram and myocardial contractility and diastolic function were assessed in vitro in an isovolumetrically beating isolated heart (Langendorff preparation). FR reduced LV systolic function (control (mean ± SD): 58.9 ± 8.2; FR: 50.8 ± 4.8%, N = 14, P < 0.05). Myocardial contractility was preserved when assessed by the +dP/dt (control: 3493 ± 379; FR: 3555 ± 211 mmHg/s, P > 0.05), and developed pressure (in vitro) at diastolic pressure of zero (control: 152 ± 16; FR: 149 ± 15 mmHg, N = 9, P > 0.05) and 25 mmHg (control: 155 ± 9; FR: 150 ± 10 mmHg, N = 9, P > 0.05). FR also induced eccentric ventricular remodeling, and reduced myocardial elasticity (control: 10.9 ± 1.6; FR: 9.2 ± 0.9%, N = 9, P < 0.05) and LV compliance (control: 82.6 ± 16.5; FR: 68.2 ± 9.1%, N = 9, P < 0.05). We conclude that FR causes systolic ventricular dysfunction without in vitro change in myocardial contractility and diastolic dysfunction probably due to a reduction in myocardial elasticity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diseases such as hypertension, atherosclerosis, hyperlipidemia, and diabetes are associated with vascular functional and structural changes including endothelial dysfunction, altered contractility and vascular remodeling. Cellular events underlying these processes involve changes in vascular smooth muscle cell (VSMC) growth, apoptosis/anoikis, cell migration, inflammation, and fibrosis. Many factors influence cellular changes, of which angiotensin II (Ang II) appears to be amongst the most important. The physiological and pathophysiological actions of Ang II are mediated primarily via the Ang II type 1 receptor. Growing evidence indicates that Ang II induces its pleiotropic vascular effects through NADPH-driven generation of reactive oxygen species (ROS). ROS function as important intracellular and intercellular second messengers to modulate many downstream signaling molecules, such as protein tyrosine phosphatases, protein tyrosine kinases, transcription factors, mitogen-activated protein kinases, and ion channels. Induction of these signaling cascades leads to VSMC growth and migration, regulation of endothelial function, expression of pro-inflammatory mediators, and modification of extracellular matrix. In addition, ROS increase intracellular free Ca2+ concentration ([Ca2+]i), a major determinant of vascular reactivity. ROS influence signaling molecules by altering the intracellular redox state and by oxidative modification of proteins. In physiological conditions, these events play an important role in maintaining vascular function and integrity. Under pathological conditions ROS contribute to vascular dysfunction and remodeling through oxidative damage. The present review focuses on the biology of ROS in Ang II signaling in vascular cells and discusses how oxidative stress contributes to vascular damage in cardiovascular disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the role of magnetic resonance imaging (MRI) for the non-invasive detection of coronary abnormalities and specifically the remodeling process in patients with coronary artery disease (CAD). MRI was performed in 10 control healthy subjects and 26 patients with angiographically proven CAD of the right coronary (RCA) or left anterior descending (LAD) artery; 23 patients were within two months of acute coronary syndromes, and 3 had stable angina with a positive test for ischemia. Wall thickness (WT), vessel wall area (VWA), total vessel area (TVA), and luminal area (LA) were measured. There were significant increases in WT (mean ± SEM, RCA: 2.62 ± 0.75 vs 0.53 ± 0.15 mm; LAD: 2.21 ± 0.69 vs 0.62 ± 0.24 mm) and in VWA (RCA: 30.96 ± 17.57 vs 2.1 ± 1.2 mm²; LAD: 19.53 ± 7.25 vs 3.6 ± 2.0 mm²) patients compared to controls (P < 0.001 for each variable). TVA values were also greater in patients compared to controls (RCA: 44.56 ± 21.87 vs 12.3 ± 4.2 mm²; LAD: 31.89 ± 11.31 vs 17.0 ± 6.2 mm²; P < 0.001). In contrast, the LA did not differ between patients and controls for RCA or LAD. When the LA was adjusted for vessel size using the LA/TVA ratio, a significant difference was found: 0.33 ± 0.16 in patients vs 0.82 ± 0.09 in controls (RCA) and 0.38 ± 0.13 vs 0.78 ± 0.06 (LAD) (P < 0.001). As opposed to normal controls, positive remodeling was present in all patients with CAD, as indicated by larger VWA. We conclude that MRI detected vessel wall abnormalities and was an effective tool for the noninvasive evaluation of the atherosclerotic process and coronary vessel wall modifications, including positive remodeling that frequently occurs in patients with acute coronary syndromes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The extracellular matrix is a three-dimensional network of proteins, glycosaminoglycans and other macromolecules. It has a structural support function as well as a role in cell adhesion, migration, proliferation, differentiation, and survival. The extracellular matrix conveys signals through membrane receptors called integrins and plays an important role in pituitary physiology and tumorigenesis. There is a differential expression of extracellular matrix components and integrins during the pituitary development in the embryo and during tumorigenesis in the adult. Different extracellular matrix components regulate adrenocorticotropin at the level of the proopiomelanocortin gene transcription. The extracellular matrix also controls the proliferation of adrenocorticotropin-secreting tumor cells. On the other hand, laminin regulates the production of prolactin. Laminin has a dynamic pattern of expression during prolactinoma development with lower levels in the early pituitary hyperplasia and a strong reduction in fully grown prolactinomas. Therefore, the expression of extracellular matrix components plays a role in pituitary tumorigenesis. On the other hand, the remodeling of the extracellular matrix affects pituitary cell proliferation. Matrix metalloproteinase activity is very high in all types of human pituitary adenomas. Matrix metalloproteinase secreted by pituitary cells can release growth factors from the extracellular matrix that, in turn, control pituitary cell proliferation and hormone secretion. In summary, the differential expression of extracellular matrix components, integrins and matrix metalloproteinase contributes to the control of pituitary hormone production and cell proliferation during tumorigenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low bone remodeling and relatively low serum parathyroid hormone (PTH) levels characterize adynamic bone disease (ABD). The impact of renal transplantation (RT) on the course of ABD is unknown. We studied prospectively 13 patients with biopsy-proven ABD after RT. Bone histomorphometry and bone mineral density (BMD) measurements were performed in the 1st and 12th months after RT. Serum PTH, 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, and osteocalcin were measured regularly throughout the study. Serum PTH levels were slightly elevated at transplantation, normalized at the end of the third month and remained stable thereafter. Bone biopsies performed in the first month after RT revealed low bone turnover in all patients, with positive bone aluminum staining in 5. In the 12th month, second biopsies were performed on 12 patients. Bone histomorphometric dynamic parameters improved in 9 and were completely normalized in 6, whereas no bone mineralization was detected in 3 of these 12 patients. At 12 months post-RT, no bone aluminum was detected in any patient. We also found a decrease in lumbar BMD and an increase in femoral BMD. Patients suffering from ABD, even those with a reduction in PTH levels, may present partial or complete recovery of bone turnover after successful renal transplantation. However, it is not possible to positively identify the mechanisms responsible for the improvement. Identifying these mechanisms should lead to a better understanding of the physiopathology of ABD and to the development of more effective treatments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vitamin D deficiency, observed mainly in the geriatric population, is responsible for loss of bone mass and increased risk of bone fractures. Currently, recommended doses of cholecalciferol are advised, but since there are few studies evaluating the factors that influence the serum levels of 25-hydroxyvitamin D (25(OH)D) following supplementation, we analyzed the relationship between the increase in serum 25(OH)D after supplementation and body fat. We studied a group of 42 homebound elderly subjects over 65 years old (31 women) in order to assess whether there is a need for adjustment of the doses of cholecalciferol administered to this group according to their adipose mass. Baseline measurements of 25(OH)D, intact parathyroid hormone and bone remodeling markers (osteocalcin and carboxy-terminal fraction of type 1 collagen) were performed. Percent body fat was measured by dual-energy X-ray absorptiometry. The patients were divided into three groups according to their percent body fat index and were treated with cholecalciferol, 7,000 IU a week, for 12 weeks. The increases in serum levels of 25(OH)D were similar for all groups, averaging 7.46 ng/mL (P < 0.05). It is noteworthy that this increase only shifted these patients from the insufficiency category to hypovitaminosis. Peak levels of 25(OH)D were attained after only 6 weeks of treatment. This study demonstrated that adipose tissue mass does not influence the elevation of 25(OH)D levels following vitamin D supplementation, suggesting that there is no need to adjust vitamin D dose according to body fat in elderly homebound individuals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We assessed the effect of chronic hyperglycemia on bone mineral density (BMD) and bone remodeling in patients with type 2 diabetes mellitus. We investigated 42 patients with type 2 diabetes under stable control for at least 1 year, 22 of them with good metabolic control (GMC: mean age = 48.8 ± 1.5 years, 11 females) and 20 with poor metabolic control (PMC: mean age = 50.2 ± 1.2 years, 8 females), and 24 normal control individuals (CG: mean age = 46.5 ± 1.1 years, 14 females). We determined BMD in the femoral neck and at the L2-L4 level (DEXA) and serum levels of glucose, total glycated hemoglobin (HbA1), total and ionic calcium, phosphorus, alkaline phosphatase, follicle-stimulating hormone, intact parathyroid hormone (iPTH), 25-hydroxyvitamin D (25-OH-D), insulin-like growth factor I (IGFI), osteocalcin, procollagen type I C propeptide, as well as urinary levels of deoxypyridinoline and creatinine. HbA1 levels were significantly higher in PMC patients (12.5 ± 0.6 vs 7.45 ± 0.2% for GMC and 6.3 ± 0.9% for CG; P < 0.05). There was no difference in 25-OH-D, iPTH or IGFI levels between the three groups. BMD values at L2-L4 (CG = 1.068 ± 0.02 vs GMC = 1.170 ± 0.03 vs PMC = 1.084 ± 0.02 g/cm²) and in the femoral neck (CG = 0.898 ± 0.03 vs GMC = 0.929 ± 0.03 vs PMC = 0.914 ± 0.03 g/cm²) were similar for all groups. PMC presented significantly lower osteocalcin levels than the other two groups, whereas no significant difference in urinary deoxypyridine was observed between groups. The present results demonstrate that hyperglycemia is not associated with increased bone resorption in type 2 diabetes mellitus and that BMD is not altered in type 2 diabetes mellitus.