63 resultados para Plasma emission


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In hydrosedimentology studies the determination of the trace element concentrations at the study site is imperative, since this background can be used to assess the enrichment of sediments with these elements. This enrichment can be the result of the natural process of geological formation or of anthropogenic activities. In the latter case, guidelines are used to indicate the concentrations at which trace elements cause ecotoxicity effects on the environment. Thus, this study used legal reserve areas in the municipality of Toledo, PR, where natural forests are maintained, with no or minimal human interference to establish background levels. The results of atomic emission spectrometry with inductively coupled argon plasma showed that the legal reserves have lower levels of trace elements than other theoretical references, but equivalent concentrations to the safety levels recommended by international guidelines. It was concluded that determining values is fundamental to recommend this background as scientific database for research in the area of hydrosedimentology of this site and also as a way of environmental management of the watershed of this municipality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the greenhouse gases, nitrous oxide (N2O) is considered important, in view of a global warming potential 296 times greater than that of carbon dioxide (CO2) and its dynamics strongly depend on the availability of C and mineral N in the soil. The understanding of the factors that define emissions is essential to develop mitigation strategies. This study evaluated the dynamics of N2O emissions after the application of different rice straw amounts and nitrate levels in soil solution. Pots containing soil treated with sodium nitrate rates (0, 50 and 100 g kg-1 of NO−3-N) and rice straw levels (0, 5 and 10 Mg ha-1), i.e., nine treatments, were subjected to anaerobic conditions. The results showed that N2O emissions were increased by the addition of greater NO−3 amounts and reduced by large straw quantities applied to the soil. On the 1st day after flooding (DAF), significantly different N2O emissions were observed between the treatments with and without NO−3 addition, when straw had no significant influence on N2O levels. Emissions peaked on the 4th DAF in the treatments with highest NO−3-N addition. At this moment, straw application negatively affected N2O emissions, probably due to NO−3 immobilization. There were also alterations in other soil electrochemical characteristics, e.g., higher straw levels raised the Fe, Mn and dissolved C contents. These results indicate that a lowering of NO−3 concentration in the soil and the increase of straw incorporation can decrease N2O emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In comparison with other micronutrients, the levels of nickel (Ni) available in soils and plant tissues are very low, making quantification very difficult. The objective of this paper is to present optimized determination methods of Ni availability in soils by extractants and total content in plant tissues for routine commercial laboratory analyses. Samples of natural and agricultural soils were processed and analyzed by Mehlich-1 extraction and by DTPA. To quantify Ni in the plant tissues, samples were digested with nitric acid in a closed system in a microwave oven. The measurement was performed by inductively coupled plasma/optical emission spectrometry (ICP-OES). There was a positive and significant correlation between the levels of available Ni in the soils subjected to Mehlich-1 and DTPA extraction, while for plant tissue samples the Ni levels recovered were high and similar to the reference materials. The availability of Ni in some of the natural soil and plant tissue samples were lower than the limits of quantification. Concentrations of this micronutrient were higher in the soil samples in which Ni had been applied. Nickel concentration differed in the plant parts analyzed, with highest levels in the grains of soybean. The grain, in comparison with the shoot and leaf concentrations, were better correlated with the soil available levels for both extractants. The methods described in this article were efficient in quantifying Ni and can be used for routine laboratory analysis of soils and plant tissues.