92 resultados para PREANALYTICAL DETERMINANT
Resumo:
The objective of this review on the investigation of "cara inchada" in cattle (CI), pursued over the last 30 years, was to elucidate the pathogenicity of the disease and come to proper conclusions on its etiology. CI has been widely considered to be of nutritional origin, caused primarily by mineral deficiency or imbalance. However, the disease consists of a rapidly progressive periodontitis, affecting the periodontal tissues at the level of the premolars and molars during the period of tooth eruption generally starting in young calves. The disease led to great economic losses for farmers in central-western Brazil, after the occupation of new land for cattle raising in the 1960s and 1970s. The lateral enlargement of the maxillary bones of affected calves gave the disease the popular name of "cara inchada", i.e., swollen or enlarged face. The enlargement was found to be due to a chronic ossifying periostitis resulting from the purulent alveolitis of CI. Black-pigmented non-saccharolytic Bacteroides melaninogenicus, always together with Actinomyces (Corynebacterium) pyogenes, were isolated in large numbers from the periodontal lesions. B. melaninogenicus could be isolated in small numbers also from the marginal gingiva of a few healthy calves maintained on CI-free farms. "In vitro"-assays showed that streptomycin and actinomycin, as well as the supernatants of cultivates of actinomycetes from soils of CI-prone farms, applied in subinhibitory concentrations to the bacteria tested, enhanced significantly (up to 10 times) the adherence of the black-pigmented B.melaninogenicus to epithelial cells of the bovine gingiva. The antibiotics are apparently produced in large quantities by the increased number of soil actinomycetes, including the genus Streptomyces, that develop when soil microflora are modified by cultivating virgin forest or "Cerrado" (tree-savanna) for the first time for cattle grazing. The epidemiology of CI now provides strong evidence that the ingestion with the forage of such antibiotics could possibly be an important determinant factor for the onset and development of this infectious periodontitis. The antibiotic enhanced adherence of B.melaninogenicus to the sulcus-epithelium of the marginal gingiva, is thought to allow it to colonize, form a plaque and become pathogenic. There is experimental evidence that this determinant factor for the development of the periodontitis is present also in the milk of the mothers of CI-diseased calves. It has been shown that the bacteria isolated from the periodontal CI-lesions produce enzymes and endotoxins capable of destroying the periodontal tissues. The epidemiology of CI, with its decline in incidence and its disappearance after several years, could be explained by the fact that the former equilibrium of the microflora of the once undisturbed virgin soil has been reached again and that the number of antibiotic producing actinomycetes has been anew reduced. By this reasoning and all the data available, CI should be considered as a multifactorial infectious disease, caused primarily by the anaerobic black-pigmented non-saccharolytic Bacteroides melaninogenicus, always together with the micro-anaerobic Actinomyces pyogenes. Accordingly, the onset and development of the infectious periodontitis is apparently determined by ingestion with the forage of subinhibitory concentrations of antibiotics produced in recently cultivated virgin soils. This hypothesis is supported by the recent observation of renewed outbreaks of CI-periodontitis in former CI-prone areas, following fresh cultivation after many years. The infectious nature of CI is confirmed by trials in which virginiamycin was used efficiently for the oral treatment of CI-diseased cattle. Previously it has been shown, that spiramycin and virginiamycin, used as additives in mineral supplements, prevented CI-periodontitis.
Resumo:
Plot-scale overland flow experiments were conducted to evaluate the efficiency of streamside management zones (SMZs) in retaining herbicides in runoff generated from silvicultural activities. Herbicide retention was evaluated for five different slopes (2, 5, 10, 15, and 20%), two cover conditions (undisturbed O horizon and raked surface), and two periods under contrasting soil moisture conditions (summer dry and winter wet season) and correlated to O horizon and site conditions. Picloram (highly soluble in water) and atrazine (moderately sorbed into soil particles) at concentrations in the range of 55 and 35 µg L-1 and kaolin clay (approximately 5 g L-1) were mixed with 13.000 liters of water and dispersed over the top of 5 x 10 m forested plots. Surface flow was collected 2, 4, 6, and 10 m below the disperser to evaluate the changes in concentration as it moved through the O horizon and surface soil horizon-mixing zone. Results showed that, on average, a 10 m long forested SMZ removed around 25% of the initial concentration of atrazine and was generally ineffective in reducing the more soluble picloram. Retention of picloram was only 6% of the applied quantity. Percentages of mass reduction by infiltration were 36% for atrazine and 20% for picloram. Stronger relationships existed between O horizon depth and atrazine retention than in any other measured variable, suggesting that better solid-solution contact associated with flow through deeper O horizons is more important than either velocity or soil moisture as a determinant of sorption.
Resumo:
Interleukin-15 (IL-15) is a newly-discovered cytokine that is produced by activated monocytes early in the course of the innate immune response. IL-15 is able to bind to components of the interleukin-2 receptor (IL-2R) despite the fact that it has no sequence homology with IL-2. IL-15 stimulates human natural killer cell proliferation, cytotoxicity, and cytokine production and can substitute for IL-2 under most conditions. In vitro studies indicate that monocyte-derived IL-15 may be an important determinant of IFN-gamma production by NK cells. In addition, IL-15 is able to promote the survival of natural killer cells under serum-free conditions. The IL-15 receptor is a heterotrimeric complex which is composed of the IL-2Rß and g chains in combination with a unique alpha chain (IL-15a). The IL-15Ra chain has strong sequence homology to the IL-2Ra chain and confers high affinity binding to the IL-15R. In contrast to IL-2, transcript for IL-15 and IL-15a is expressed in a number of tissues and indicates that IL-15 may be an important ligand for cells that express components of the IL-2R
Resumo:
Evidence is accumulating that Th1 cells play an important role in the development of multiple sclerosis (MS) and experimental allergic encephalomyelitis (EAE), whereas Th2 cells contribute to recovery from disease. A major determinant in the development of Th1 and Th2 cells is the type of antigen-presenting cell (APC) involved and its functional characteristics, e.g., the production of interleukin-12. Therefore, modulation of APC might interfere with the development of Th1 type responses and as such be beneficial for MS and EAE. The potential of cytokines, in particular interleukin-10, and glucocorticoids to exert a selective effect on APC, and as a consequence to affect the Th1-Th2 balance in EAE, is discussed
Resumo:
The contributions of cytokines to the development and progression of disease in a mouse model of retrovirus-induced immunodeficiency (MAIDS) are controversial. Some studies have indicated an etiologic role for type 2 cytokines, while others have emphasized the importance of type 1 cytokines. We have used mice deficient in expression of IL-4, IL-10, IL-4 and IL-10, IFN-g, or ICSBP - a transcriptional protein involved in IFN signaling - to examine their contributions to this disorder. Our results demonstrate that expression of type 2 cytokines is an epiphenomenon of infection and that IFN-g is a driving force in disease progression. In addition, exogenously administered IL-12 prevents many manifestations of disease while blocking retrovirus expression. Interruption of the IFN signaling pathways in ICSBP-/- mice blocks induction of MAIDS. Predictably, ICSBP-deficient mice exhibit impaired responses to challenge with several other viruses. This immunodeficiency is associated with impaired production of IFN-g and IL-12. Unexpectedly, however, the ICSBP-/- mice also develop a syndrome with many similarities to chronic myelogenous leukemia in humans. The chronic phase of this disease is followed by a fatal blast crisis characterized by clonal expansions of undifferentiated cells. ICSBP is thus an important determinant of hematopoietic growth and differentiation as well as a prominent signaling molecule for IFNs
Resumo:
The interplay of vasoactive peptide systems is an essential determinant of blood pressure regulation in mammals. While the endothelin and the renin-angiotensin systems raise blood pressure by inducing vasoconstriction and sodium retention, the kallikrein-kinin and the natriuretic-peptide systems reduce arterial pressure by eliciting vasodilatation and natriuresis. Transgenic technology has proven to be very useful for the functional analysis of vasoactive peptide systems. As an outstanding example, transgenic rats overexpressing the mouse Ren-2 renin gene in several tissues become extremely hypertensive. Several other transgenic rat and mouse strains with genetic modifications of components of the renin-angiotensin system have been developed in the past decade. Moreover, in recent years gene-targeting technology was employed to produce mouse strains lacking these proteins. The established animal models as well as the main insights gained by their analysis are summarized in this review.
Resumo:
It has been shown that HLA class I molecules play a significant role in the regulation of the proliferation of T cells activated by mitogens and antigens. We evaluated the ability of mAb to a framework determinant of HLA class I molecules to regulate T cell proliferation and interferon gamma (IFN-g) production against leishmania, PPD, C. albicans and tetanus toxoid antigens in patients with tegumentary leishmaniasis and healthy subjects. The anti-major histocompatibility complex (MHC) mAb (W6/32) suppressed lymphocyte proliferation by 90% in cultures stimulated with aCD3, but the suppression was variable in cultures stimulated with leishmania antigen. This suppression ranged from 30-67% and was observed only in 5 of 11 patients. IFN-g production against leishmania antigen was also suppressed by anti-HLA class I mAb. In 3 patients IFN-g levels were suppressed by more than 60%, while in the other 2 cultures IFN-g levels were 36 and 10% lower than controls. The suppression by HLA class I mAb to the proliferative response in leishmaniasis patients and in healthy controls varied with the antigens and the patients or donors tested. To determine whether the suppression is directed at antigen presenting cells (APCs) or at the responding T cells, experiments with antigen-primed non-adherent cells, separately incubated with W6/32, were performed. Suppression of proliferation was only observed when the W6/32 mAb was added in the presence of T cells. These data provide evidence that a mAb directed at HLA class I framework determinants can suppress proliferation and cytokine secretion in response to several antigens.
Resumo:
Over the last few years, some of our experiments in which mycobacterial antigens were presented to the immune system as if they were viral antigens have had a significant impact on our understanding of protective immunity against tuberculosis. They have also markedly enhanced the prospects for new vaccines. We now know that individual mycobacterial protein antigens can confer protection equal to that from live BCG vaccine in mice. A critical determinant of the outcome of immunization appears to be the degree to which antigen-specific cytotoxic T cells are generated by the immune response. Our most recent studies indicate that DNA vaccination is an effective way to establish long-lasting cytotoxic T cell memory and protection against tuberculosis.
Resumo:
The widespread consumption of anorectics and combined anorectic + alcohol misuse are problems in Brazil. In order to better understand the interactive effects of ethanol (EtOH) and diethylpropion (DEP) we examined the locomotion-activating effects of these drugs given alone or in combination in mice. We also determined whether this response was affected by dopamine (DA) or opioid receptor antagonists. A total of 160 male Swiss mice weighing approximately 30 g were divided into groups of 8 animals per group. The animals were treated daily for 7 consecutive days with combined EtOH + DEP (1.2 g/kg and 5.0 mg/kg, ip), EtOH (1.2 g/kg, ip), DEP (5.0 mg/kg, ip) or the control solution coadministered with the DA antagonist haloperidol (HAL, 0.075 mg/kg, ip), the opioid antagonist naloxone (NAL, 1.0 mg/kg, ip), or vehicle. On days 1, 7 and 10 after the injections, mice were assessed in activity cages at different times (15, 30, 45 and 60 min) for 5 min. The acute combination of EtOH plus DEP induced a significantly higher increase in locomotor activity (day 1: 369.5 ± 34.41) when compared to either drug alone (day 1: EtOH = 232.5 ± 23.79 and DEP = 276.0 ± 12.85) and to control solution (day 1: 153.12 ± 7.64). However, the repeated administration of EtOH (day 7: 314.63 ± 26.79 and day 10: 257.62 ± 29.91) or DEP (day 7: 309.5 ± 31.65 and day 10: 321.12 ± 39.24) alone or in combination (day 7: 459.75 ± 41.28 and day 10: 427.87 ± 33.0) failed to induce a progressive increase in the locomotor response. These data demonstrate greater locomotion-activating effects of the EtOH + DEP combination, probably involving DA and/or opioid receptor stimulation, since the daily pretreatment with HAL (day 1: EtOH + DEP = 395.62 ± 11.92 and EtOH + DEP + HAL = 371.5 ± 6.76; day 7: EtOH + DEP = 502.5 ± 42.27 and EtOH + DEP + HAL = 281.12 ± 16.08; day 10: EtOH + DEP = 445.75 ± 16.64 and EtOH + DEP + HAL = 376.75 ± 16.4) and NAL (day 1: EtOH + DEP = 553.62 ± 38.15 and EtOH + DEP + NAL = 445.12 ± 55.67; day 7: EtOH + DEP = 617.5 ± 38.89 and EtOH + DEP + NAL = 418.25 ± 61.18; day 10: EtOH + DEP = 541.37 ± 32.86 and EtOH + DEP + NAL = 427.12 ± 51.6) reduced the locomotor response induced by combined administration of EtOH + DEP. These findings also suggest that a major determinant of combined anorectic-alcohol misuse may be the increased stimulating effects produced by the combination.
Resumo:
Heart rate variability is a relevant predictor of cardiovascular risk in humans. A significant genetic influence on heart rate variability is suggested, although the genes involved are ill-defined. The Mas-protooncogene encodes a G-protein-coupled receptor with seven transmembrane domains highly expressed in testis and brain. Since this receptor is supposed to interact with the signaling of angiotensin II, which is an important regulator of cardiovascular homeostasis, heart rate and blood pressure were analyzed in Mas-deficient mice. Using a femoral catheter the blood pressure of mice was measured for a period of 30 min and 250 data values per second were recorded. The mean values and range of heart rate and blood pressure were then calculated. Neither heart rate nor blood pressure were significantly different between knockout mice and controls. However, high resolution recording of these parameters and analysis of the data by non-linear dynamics revealed significant alterations in cardiovascular variability in Mas-deficient animals. In particular, females showed a strong reduction of heart rate variability. Furthermore, the data showed an increased sympathetic tone in knockout animals of both genders. The marked alterations detected in Mas-deficient mice of both genders suggest that the Mas-protooncogene is an important determinant of heart rate and blood pressure variability.
Resumo:
The anthropometric status and metabolic control of 51 recently diagnosed Brazilian schoolchildren with type 1 diabetes (DM1), during the first 5 years of the disease, were compared with those of normal children (60 girls and 132 boys) belonging to the same environmental condition and pubertal stage. Metabolic control was evaluated on the basis of fasting plasma glucose (FPG) and HbA1c levels. The criteria of the National Center for Health Statistics were used for anthropometric evaluation. FPG (205 ± 51 mg/dl for girls vs 200 ± 34 mg/dl for boys) and % above upper normal limit of median HbA1c (1.8% for girls vs 2.5% for boys with diabetes) were not significantly different during follow-up. The Z-score of the last height evaluation was lower in the girls' group (-0.14 vs -0.53, P<0.05). By forward stepwise analysis, the Z-score of the initial height was statistically significant as a determinant factor for height at the end of the study in both girls and boys with DM1. The Z-score of weight at last evaluation was not different from that at diagnosis in either sex. However, analysis according to pubertal stage showed a tendency to a weight increase in the girls. The weight recovery and height loss in girls with DM1 follows the trend of the normal Brazilian population.
Resumo:
Previous genetic association studies have overlooked the potential for biased results when analyzing different population structures in ethnically diverse populations. The purpose of the present study was to quantify this bias in two-locus association studies conducted on an admixtured urban population. We studied the genetic structure distribution of angiotensin-converting enzyme insertion/deletion (ACE I/D) and angiotensinogen methionine/threonine (M/T) polymorphisms in 382 subjects from three subgroups in a highly admixtured urban population. Group I included 150 white subjects; group II, 142 mulatto subjects, and group III, 90 black subjects. We conducted sample size simulation studies using these data in different genetic models of gene action and interaction and used genetic distance calculation algorithms to help determine the population structure for the studied loci. Our results showed a statistically different population structure distribution of both ACE I/D (P = 0.02, OR = 1.56, 95% CI = 1.05-2.33 for the D allele, white versus black subgroup) and angiotensinogen M/T polymorphism (P = 0.007, OR = 1.71, 95% CI = 1.14-2.58 for the T allele, white versus black subgroup). Different sample sizes are predicted to be determinant of the power to detect a given genotypic association with a particular phenotype when conducting two-locus association studies in admixtured populations. In addition, the postulated genetic model is also a major determinant of the power to detect any association in a given sample size. The present simulation study helped to demonstrate the complex interrelation among ethnicity, power of the association, and the postulated genetic model of action of a particular allele in the context of clustering studies. This information is essential for the correct planning and interpretation of future association studies conducted on this population.
Resumo:
The c-myc protein is known to regulate the cell cycle, and its down-regulation can lead to cell death by apoptosis. The role of c-myc protein as an independent prognostic determinant in cervical cancer is controversial. In the present study, a cohort of 220 Brazilian women (mean age 53.4 years) with FIGO stage I, II and III (21, 28 and 51%, respectively) cervical squamous cell carcinomas was analyzed for c-myc protein expression using immunohistochemistry. The disease-free survival and relapse-rate were analyzed using univariate (Kaplan-Meier) survival analysis for 116 women who completed the standard FIGO treatment and were followed up for 5 years. Positive c-myc staining was detected in 40% of carcinomas, 29% being grade 1, 9% grade 2, and 2% grade 3. The distribution of positive c-myc according to FIGO stage was 19% (17 women) in stage I, 33% (29) in stage II, and 48% (43) in stage III of disease. During the 60-month follow-up, disease-free survival in univariate (Kaplan-Meier) survival analysis (116 women) was lower for women with c-myc-positive tumors, i.e., 60.5, 47.5 and 36.6% at 12, 36, and 60 months, respectively (not significant). The present data suggest that immunohistochemical demonstration of c-myc does not possess any prognostic value independent of FIGO stage, and as such is unlikely to be a useful prognostic marker in cervical squamous cell carcinoma.
Resumo:
We evaluated spine bone mineral density (BMD) in Brazilian children with juvenile systemic lupus erythematosus (JSLE) in order to detect potential predictors of reduction in bone mass. A cross-sectional study of BMD at the lumbar spine level (L2-L4) was conducted on 16 female JSLE patients aged 6-17 years. Thirty-two age-matched healthy girls were used as control. BMD at the lumbar spine was measured by dual-energy X-ray absorptiometry. Weight, height and pubertal Tanner stage were determined in patients and controls. Disease duration, mean daily steroid doses, mean cumulative steroid doses and JSLE activity measured by the systemic lupus erythematosus disease activity index (SLEDAI) were determined for all JSLE patients based on their medical charts. All parameters were used as potential determinant factors for bone loss. Lumbar BMD tended to be lower in the JSLE patients, however, this difference was not statistically significant (P = 0.10). No significant correlation was observed in JSLE girls between BMD and age, height, Tanner stage, disease duration, corticosteroid use or disease activity. We found a weak correlation between BMD and weight (r = 0.672). In the JSLE group we found no significant parameters to correlate with reduced bone mass. Disease activity and mean cumulative steroid doses were not related to BMD values. We did not observe reduced bone mass in female JSLE.
Resumo:
Diseases such as hypertension, atherosclerosis, hyperlipidemia, and diabetes are associated with vascular functional and structural changes including endothelial dysfunction, altered contractility and vascular remodeling. Cellular events underlying these processes involve changes in vascular smooth muscle cell (VSMC) growth, apoptosis/anoikis, cell migration, inflammation, and fibrosis. Many factors influence cellular changes, of which angiotensin II (Ang II) appears to be amongst the most important. The physiological and pathophysiological actions of Ang II are mediated primarily via the Ang II type 1 receptor. Growing evidence indicates that Ang II induces its pleiotropic vascular effects through NADPH-driven generation of reactive oxygen species (ROS). ROS function as important intracellular and intercellular second messengers to modulate many downstream signaling molecules, such as protein tyrosine phosphatases, protein tyrosine kinases, transcription factors, mitogen-activated protein kinases, and ion channels. Induction of these signaling cascades leads to VSMC growth and migration, regulation of endothelial function, expression of pro-inflammatory mediators, and modification of extracellular matrix. In addition, ROS increase intracellular free Ca2+ concentration ([Ca2+]i), a major determinant of vascular reactivity. ROS influence signaling molecules by altering the intracellular redox state and by oxidative modification of proteins. In physiological conditions, these events play an important role in maintaining vascular function and integrity. Under pathological conditions ROS contribute to vascular dysfunction and remodeling through oxidative damage. The present review focuses on the biology of ROS in Ang II signaling in vascular cells and discusses how oxidative stress contributes to vascular damage in cardiovascular disease.