104 resultados para Optimization methodology
Resumo:
A statistical mixture-design technique was used to study the effects of different solvents and their mixtures on the yield, total polyphenol content, and antioxidant capacity of the crude extracts from the bark of Schinus terebinthifolius Raddi (Anacardiaceae). The experimental results and their response-surface models showed that ternary mixtures with equal portions of all the three solvents (water, ethanol and acetone) were better than the binary mixtures in generating crude extracts with the highest yield (22.04 ± 0.48%), total polyphenol content (29.39 ± 0.39%), and antioxidant capacity (6.38 ± 0.21). An analytical method was developed and validated for the determination of total polyphenols in the extracts. Optimal conditions for the various parameters in this analytical method, namely, the time for the chromophoric reaction to stabilize, wavelength of the absorption maxima to be monitored, the reference standard and the concentration of sodium carbonate were determined to be 5 min, 780 nm, pyrogallol, and 14.06% w v-1, respectively. UV-Vis spectrophotometric monitoring of the reaction under these conditions proved the method to be linear, specific, precise, accurate, reproducible, robust, and easy to perform.
Resumo:
This paper describes the optimization of a multiresidue chromatographic analysis for the identification and quantification of 20 pesticides in bovine milk, including three carbamates, a carbamate oxime, six organophosphates, two strobilurins, a pyrethroid, an oxazolidinedione, an aryloxyphenoxypropionate acid/ester, a neonicotinoid, a dicarboximide, and three triazoles. The influences of different chromatographic columns and gradients were evaluated. Furthermore, four different extraction methods were evaluated; each utilized both different solvents, including ethyl acetate, methanol, and acetonitrile, and different workup steps. The best results were obtained by a modified QuEChERS method that lacked a workup step, and that included freezing the sample for 2 hours at -20 ºC. The results were satisfactory, yielding coefficients of variation of less than 20%, with the exception of the 50 µg L-1 sample of famoxadone, and recoveries between 70 and 120%, with the exception of acephate and bifenthrin; however, both analytes exhibited coefficients of variation of less than 20%.
Resumo:
In this work is proposed a solid phase preconcentration system of Co2+ ions and its posterior determination by GFAAS in which fractional factorial design and response surface methodology (RSM) were used for optimization of the variables associated with preconcentration system performance. The method is based on cobalt extraction as a complex Co2+-PAN (1:2) in a mini-column of polyurethane foam (PUF) impregnated with 1-(2-pyridylazo)-naphthol (PAN) followed by elution with HCl solution and its determination by GFAAS. The chemical and flow variables studied were pH, buffer concentration, eluent concentration and preconcentration and elution flow rates. Results obtained from fractional factorial design 2(5-1) showed that only the variables pH, buffer concentration and interaction (pH X buffer concentration) based on analysis of variance (ANOVA) were statistically significant at 95% confidence level. Under optimised conditions, the method provided an enrichment factor of 11.6 fold with limit of detection and quantification of 38 and 130 ng L-1, respectively, and linear range varying from 0.13 to 10 µg L-1. The precision (n = 9) assessed by relative standard deviation (RSD) was respectively 5.18 and 2.87% for 0.3 and 3.0 µg L-1 cobalt concentrations.
Resumo:
N-methylpyrrolidone is a powerful solvent for variety of chemical processes due to its vast chemical properties. It has been used in manufacturing processes of polymers, detergents, pharmaceuticals rubber and many more chemical substances. However, it creates large amount of residue in some of these processes which has to be dealt with. Many well known methods such as BASF in rubber producing units have tried to regenerate the solvent at the end of each run, however, there is still discarding of large amount of residue containing NMP, which over time, could cause environmental concerns. In this study, we have tried to optimize regeneration of the NMP extraction from butadiene production. It is shown that at higher temperatures NMP is separated from the residue with close to 90% efficiency, and the solvent residue proved to be the most effective with a 6: 1 ratio.
Resumo:
The objective of this work was to define the optimal conditions for invertase assay, seeking to determine the ideal parameters for the different isoenzymes of leaf and bark tissues in adult rubber trees. Assays of varying pH, sucrose concentration and temperature of the reaction medium were conducted for the two investigated isoenzymes. The results pointed out the existence of two different pH related isoforms for the two analyzed tissues, with an isoenzyme being more active at pH 5,5 and the other at neutral/alkaline pH. Leaf blade isoenzymes presented similar values for substrate concentration, whereas the bark isoenzyme presented maximum values below those previously reported. The assays at different temperatures presented similar values for leaf isoenzymes, though they have differed significantly among the obtained values.
Resumo:
ABSTRACT Permanent Preservation Areas (PPAs) along watercourses have been the focus of numerous studies, not only because of the fragility and ecological relevance of riverine vegetation, but also because of the inefficiency demonstrated in conforming to the legislation protecting it. One of the major difficulties encountered in terms of guaranteeing the effective conservation of these riverside areas is the absence of methodologies that can be used to define them rapidly and accurately without manually determining the widths of the rivers or assigning only uniform linear values for the entire watercourse. The present work sought to develop a spatial analysis methodology capable of automatically defining permanent preservation areas along watercourses using geographic information system (GIS) software. The present study was undertaken in the Sergipe River basin, "considering the river itself and its principal affluents. We used the database of the Digital Atlas of Hydrological Resources (SEMARH/SE), and the delimitations of the PPAs were performed using ArcGIS 10.1 and the XToolPro 9.0 extension. A total of 5,003.82 hectares of Permanent Preservation Areas were delimited along the margins of the rivers analyzed, with a margin of error of <1% in delimiting the widths of the rivers within the entire area considered. The methodology described here can be used to define PPAs efficiently, relatively rapidly, and with very small margins of error, thus representing a technological advance in terms of using GIS for land management.
Resumo:
Linear programming models are effective tools to support initial or periodic planning of agricultural enterprises, requiring, however, technical coefficients that can be determined using computer simulation models. This paper, presented in two parts, deals with the development, application and tests of a methodology and of a computational modeling tool to support planning of irrigated agriculture activities. Part I aimed at the development and application, including sensitivity analysis, of a multiyear linear programming model to optimize the financial return and water use, at farm level for Jaíba irrigation scheme, Minas Gerais State, Brazil, using data on crop irrigation requirement and yield, obtained from previous simulation with MCID model. The linear programming model outputted a crop pattern to which a maximum total net present value of R$ 372,723.00 for the four years period, was obtained. Constraints on monthly water availability, labor, land and production were critical in the optimal solution. In relation to the water use optimization, it was verified that an expressive reductions on the irrigation requirements may be achieved by small reductions on the maximum total net present value.
Application of simulated annealing in simulation and optimization of drying process of Zea mays malt
Resumo:
Kinetic simulation and drying process optimization of corn malt by Simulated Annealing (SA) for estimation of temperature and time parameters in order to preserve maximum amylase activity in the obtained product are presented here. Germinated corn seeds were dried at 54-76 °C in a convective dryer, with occasional measurement of moisture content and enzymatic activity. The experimental data obtained were submitted to modeling. Simulation and optimization of the drying process were made by using the SA method, a randomized improvement algorithm, analogous to the simulated annealing process. Results showed that seeds were best dried between 3h and 5h. Among the models used in this work, the kinetic model of water diffusion into corn seeds showed the best fitting. Drying temperature and time showed a square influence on the enzymatic activity. Optimization through SA showed the best condition at 54 ºC and between 5.6h and 6.4h of drying. Values of specific activity in the corn malt were found between 5.26±0.06 SKB/mg and 15.69±0,10% of remaining moisture.
Resumo:
In this study is presented an economic optimization method to design telescope irrigation laterals (multidiameter) with regular spaced outlets. The proposed analytical hydraulic solution was validated by means of a pipeline composed of three different diameters. The minimum acquisition cost of the telescope pipeline was determined by an ideal arrangement of lengths and respective diameters for each one of the three segments. The mathematical optimization method based on the Lagrange multipliers provides a strategy for finding the maximum or minimum of a function subject to certain constraints. In this case, the objective function describes the acquisition cost of pipes, and the constraints are determined from hydraulic parameters as length of irrigation laterals and total head loss permitted. The developed analytical solution provides the ideal combination of each pipe segment length and respective diameter, resulting in a decreased of the acquisition cost.
Resumo:
Aiming at contributing to an adequate management of water resources, this study aimed to analyze and compare evapotranspiration (ETc) and crop coefficients (Kc) of melon plants measured by a lysimeter and estimated according to the FAO 56 methodology, in the city of Mossoró, state of Rio Grande do Norte (RN), Brazil. In order to measure ETc, weighing lysimeters with an area of 2.25m² were used, with two repetitions. The Penman-Monteith equation parameterized by FAO was used to estimate the reference evapotranspiration, and crop coefficients were those recommended in FAO-56 Bulletin adjusted to local climatic conditions. The required climatic data and lysimeter measurements were collected by an automatic weather station installed at the site. The results were compared by means of statistical indicators: of precision (r), of accuracy (d), and performance (c), in daily and weekly intervals. The data estimated by the FAO 56 methodology were adjusted optimally to the values measured by the lysimeters in accordance with index "c" in the two time scales assessed, indicating the potential of the method proposed by FAO to irrigation management in the climatic conditions of Agripole Assú-Mossoró.
Resumo:
This study aims to present an alternative calculation methodology based on the Least Squares Method for determining the modulus of elasticity in bending wooden beams of structural dimensions. The equations developed require knowledge of three or five points measured in displacements along the piece, allowing greater reliability on the response variable, using the statistical bending test at three points and non-destructively, resulting from imposition of measures from small displacements L/300 and L/200, the largest being stipulated by the Brazilian norm NBR 7190:1997. The woods tested were Angico, Cumaru, Garapa and Jatoba. Besides obtaining the modulus of elasticity through the alternative methodology proposed, these were also obtained employing the Brazilian norm NBR 7190:1997, adapted to the condition of non-destructive testing (small displacements) and for pieces of structural dimensions. The results of the modulus of elasticity of the four species of wood according to both calculation approaches used proved to be equivalent, implying the good approximation provided by the methodology of calculation adapted from the Brazilian norm.
Resumo:
The aim of this study was to evaluate the efficiency of a sequencing batch reactor (SBR) on biological removal of nitrogen from cattle slaughterhouse wastewater by nitrification/denitrification processes. The effects of initial concentration of ammoniacal nitrogen were investigated at 100; 150 and 200 mg L-1 and air flow rate at 0.125; 0.375 and 0.625 L min¹ Lreactor-1 on the nitrogen compounds removal, by a Central Composite Rotational Design (CCRD) configuration. There were variations from 9.2 to 94.9%, 4.0 to 19.6% and 20.8 to 92.0% in the conversion of ammoniacal nitrogen to nitrate and nitrite concentration and removal of total nitrogen, respectively. The increase of air flow rate and decrease of the initial concentration of ammoniacal nitrogen resulted in higher efficiencies of total nitrogen removal, as well as the conversion of ammoniacal nitrogen to nitrate. During the pre-established intervals of this study, the removal and conversion efficiencies of nitrogen compounds above 85% were achieved in air flow rate variations from 0.375 to 0.725 L min-1 Lreactor-1 and initial concentration of ammoniacal nitrogen from 80 to 200 mg L-1. On denitrification process, we obtained efficiencies from 91.5 to 96.9% on the removal of nitrite/nitrate and from 78.3 to 87.9% on the removal of organic matter.
Resumo:
The aim of this study was to generate maps of intense rainfall equation parameters using interpolated maximum intense rainfall data. The study area comprised Espírito Santo State, Brazil. A total of 59 intense rainfall equations were used to interpolate maximum intense rainfall, with a 1 x 1 km spatial resolution. Maximum intense rainfall was interpolated considering recurrence of 2; 5; 10; 20; 50 and 100 years, and duration of 10; 20; 30; 40; 50; 60; 120; 240; 360; 420; 660; 720; 900; 1,140; 1,380 and 1,440 minutes, resulting in 96 maps of maximum intense rainfall. The used interpolators were inverse distance weighting and ordinary kriging, for which significance level (p-value) and coefficient of determination (R²) were evaluated for the cross-validation data, choosing the method that presented better R² to generate maps. Finally, maps of maximum intense precipitation were used to estimate, cell by cell, the intense rainfall equation parameters. In comparison with literature data, the mean percentage error of estimated intense rainfall equations was 13.8%. Maps of spatialized parameters, obtained in this study, are of simple use; once they are georeferenced, they may be imported into any geographic information system to be used for a specific area of interest.
Resumo:
The present research aimed to develop a modeling capable of identifying the ideal profile of swine finishing producers using the interactive performance optimization, which began by verifying qualitative the criteria considered most relevant to the decision-making, generating a closed structured diagnosis that covers the socioeconomic aspects about the activity, until the design of a mathematical model able to translate the data obtained in quantitative information. For the verification, it was proposed a practical study for a universe of 120 members of a cooperative in the state of Rio Grande do Sul, Brazil. The results showed that, from the application and the definition of the ideal profile, it was possible to verify that 82 producers are in the group of those who have obtained a "Good" performance, and to 44 the result is in the range between 86% to 90% from the ideal, which means that most have short or medium-term conditions to evolve their status for the considered "Very Good", where only 12.5% of the producers are currently.
Resumo:
Fifty Bursa of Fabricius (BF) were examined by conventional optical microscopy and digital images were acquired and processed using Matlab® 6.5 software. The Artificial Neuronal Network (ANN) was generated using Neuroshell® Classifier software and the optical and digital data were compared. The ANN was able to make a comparable classification of digital and optical scores. The use of ANN was able to classify correctly the majority of the follicles, reaching sensibility and specificity of 89% and 96%, respectively. When the follicles were scored and grouped in a binary fashion the sensibility increased to 90% and obtained the maximum value for the specificity of 92%. These results demonstrate that the use of digital image analysis and ANN is a useful tool for the pathological classification of the BF lymphoid depletion. In addition it provides objective results that allow measuring the dimension of the error in the diagnosis and classification therefore making comparison between databases feasible.