94 resultados para Oil Sector
Resumo:
The objective of this work was to evaluate the in vitro maintenance of oil palm (Elaeis guineensis and E. oleifera) accessions under slow-growth conditions. Plants produced by embryo rescue were subject to 1/2MS culture medium supplemented with the carbohydrates sucrose, mannitol, and sorbitol at 1, 2, and 3% under 20 and 25±2ºC. After 12 months, the temperature of 20°C reduced plant growth. Sucrose is the most appropriate carbohydrate for maintaining the quality of the plants, whereas mannitol and sorbitol result in a reduced plant survival.
Resumo:
The present study aims to compare yield and quality of pequi pulp oil when applying two distinct processes: in the first, pulp drying in a tray dryer at 60ºC was combined with enzymatic treatment and pressing to oil extraction; in the second, a simple process was carried out by combining sun-drying pulp and pressing. In this study, raw pequi fruits were collected in Mato Grosso State, Brazil. The fruits were autoclaved at 121ºC and stored under refrigeration. An enzymatic extract with pectinase and CMCase activities was used for hydrolysis of pequi pulp, prior to oil extraction. The oil extractions were carried out by hydraulic pressing, with or without enzymatic incubation. The oil content in the pequi pulp (45% w/w) and the physicochemical characteristic of the oil was determined according to standard analytical methods. Free fatty acids, peroxide values, iodine and saponification indices were respectively 1.46 mgKOH/g, 2.98 meq/kg, 49.13 and 189.40. The acidity and peroxide values were lower than the obtained values in commercial oil samples, respectively 2.48 mgKOH/g and 5.22 meq/kg. Aqueous extraction has presented lower efficiency and higher oxidation of unsaturated fatty acids. On the other hand, pequi pulp pressing at room temperature has produced better quality oil. However its efficiency is still smaller than the combined enzymatic treatment and pressing process. This combined process promotes cellular wall hydrolysis and pulp viscosity reduction, contributing to at least 20% of oil yield increase by pressing.
Resumo:
Chemically synthesized surfactants are widely used for many purposes in almost every sector of modern industry. Surface-active compounds of biological origin (biosurfactants) have been gaining attention in recent years because of some advantages such as biodegradability, low toxicity, diversity of applications and functionality under extreme conditions. Microbial biosurfactants are useful in bioremediation of water and soil, enhanced oil recovery, and in many formulations of petrochemical, chemical, pharmaceutical, food, cosmetic and textile industries. The importance of biosurfactants, their characteristics and industrial applications are discussed.
Resumo:
The oleochemical industry has a permanent interested in controlling the physical, functional and organoleptical properties of their products and in producing useful derivatives from their raw materials. The potential of biotechnology for developing novel or well-known products at more competitive costs meets the need of this industrial segment in expanding their goals. In this work some technical aspects, problems and perspectives related to the production of oil and fat derivatives using biotransformation techniques are discussed. Particular emphasis is given to the description of biotransformation processes using lipase as catalyst, in view of the great versatility of this enzyme class to mediate typical reactions in this technological sector.
Resumo:
Chemical industry underwent a significant upturn in the past few years. In Brazil, the position of this industry has been continuously strengthened as the second largest industrial sector. Current circumstances are discussed, especially the need for increased innovation, the impacts of nanotechnology, biotechnology and information technologies. Some misconceptions on the Brazilian chemical industry are criticized and recent improvements are described, including those related to environmental protection, to conclude that its prospects are very good, considering both the availability of basic raw materials (oil, natural gas, agribusiness products and minerals), the growing demand and increased competitiveness.
Resumo:
The aim of this study is to reevaluate the plant sources of the Amazon rosewood oil which have been named Aniba rosaeodora Ducke and Aniba duckei Kosterm. There is some disagreement on the exact botanical status of these species. Some Lauraceae specialists analyzing available material from both species concluded that there is no basis for regarding them as different. Based on our results we are confirming that the chemical composition of both species is quite different from that previously reported. So we are suggesting to bring back the previous botanical rosewood status as proposed by Adolph Ducke.
Resumo:
The essential oils from leaves (sample A) and flowers (sample B) of Aeolanthus suaveolens Mart. ex Spreng were obtained by hydrodistillation and analyzed by GC, GC-MS, and chiral phase gas chromatography (CPGC). Six compounds have been identified from the essential oils, representing ca 94.3 and 93% of the oils corresponding to samples A and B, respectively. The major constituents of samples A and B essential oils were respectively, linalool (34.2%/34.9%), (-)-massoialactone (25.9%/17.0%) and (E)-beta-farnesene (25.4%/29.1%). The enantiomeric distribution of the monoterpene linalool was established by analysis on heptakis- (6-O-methyl-2,3-di-O-pentyl)-beta-cyclodextrin capillary column. The antimicrobial activity of the essential oil from leaves and isolated compounds was also evaluated.
Resumo:
The thermal stability of vegetable oils is an important factor that affects their quality. In this study, we investigated the thermal stability of oil and lecithin extracted from soybeans by two distinct processes: mechanical extraction (pressing) and physical extraction (solvent). Thermal analysis was used to obtain information about different methodologies of extraction. The physically extracted products proved more stable than those extracted mechanically. Raman and UV-Vis techniques were applied to underpin the discussion of process differences.
Resumo:
The caffeine solubility in supercritical CO2 was studied by assessing the effects of pressure and temperature on the extraction of green coffee oil (GCO). The Peng-Robinson¹ equation of state was used to correlate the solubility of caffeine with a thermodynamic model and two mixing rules were evaluated: the classical mixing rule of van der Waals with two adjustable parameters (PR-VDW) and a density dependent one, proposed by Mohamed and Holder² with two (PR-MH, two parameters adjusted to the attractive term) and three (PR-MH3 two parameters adjusted to the attractive and one to the repulsive term) adjustable parameters. The best results were obtained with the mixing rule of Mohamed and Holder² with three parameters.
Resumo:
Essential oil was extracted from leaves of Hyptis pectinata using hydrodistillation, and its composition determined using GC-FID and GC-MS. Chemical analysis showed that there was a predominance of sesquiterpenes, of which β-caryophyllene (18.34%), caryophyllene oxide (18.00%) and calamusenone (24.68%) were measured for the first time in the genus Hyptis. Twenty-one compounds were identified, and calamusenone was isolated using preparative thin layer chromatography with a silica gel plate (60 PF254). The minimal inhibitory concentration (MIC) and minimal microbicidal concentration (MMC) were determined for various pathogenic microorganisms. H. pectinata oil was most effective against Gram (+) bacteria and yeasts.
Resumo:
bicyclogermacrene (35.12%), (E)-caryophyllene (14.19%) and α-copaene (8.19%). The antimicrobial and antileishmanial activities were investigated. The oil showed potent antimicrobial activity against Candida albicans and Rhodococcus equi. The oil also showed significant antileishmanial activity, giving the best results against Leishmania guyanensis. A preliminary cytotoxicity assay for this oil was carried out on hamster and mice (Balb/c) peritoneal macrophages. The results obtained were similar to pentamidine and considered not to be cytotoxic to macrophages.
Resumo:
Essential oils are extracted by steam distillation of plants or cold pressing of citrus fruit pericarp. They are used in food, cosmetic, personal care and pharmaceutical industries. In Brazil, oils from orange and related products contribute to near 97% to the positive commercial performance of the sector. Predatory exploitation and the availability of new sources of raw materials, with more attracting prices, changed the paradigm. Prospective studies, sustainable use of Brazilian biodiversity, domestication of exotic species with commercial relevance, the use of breeding techniques and the development of new applications for essential oils are thematic lines, usually multidisciplinary, which have been prompting the expansion of the research on essential oils. This paper presents an analysis on essential oils balance trade from 2005 to 2008 and some historical data on research and production of essential oils in Brazil.
Resumo:
From the environmental point of view, the textile sector is outstanding for the generation of large amounts of biorecalcitrant effluents. In this paper the textile effluent biodegradability, both before and after its treatment with Fenton's Reagent, were compared by means of biologic tests. These tests showed that the Fenton treatment lowered the biodegradabilty of practically all tested effluents, except one specific effluent from a scouring bath of polyester fibers, which achieved a 93% COD removal. This removal was due to a significant phase separation (oil/water).
Resumo:
Hydrogenation of (-)-menthone and (+)-isomenthone was studied at 2.7 MPa and 100 ºC. The objective was to produce a liquid menthol mixture rich in (-)-menthol from dementholized peppermint oil. Ni-based catalysts were tested and compared for this reaction: a) 6 and 12% Ni dispersed into a nonstoichiometric magnesium aluminate (Ni-Mg-Al) with spinel structure; b) Ni-Raney catalyst. Both types of catalysts were active for (-)-menthone and (+)-isomenthone hydrogenation. Lower conversion but higher selectivity to (-)-menthol was obtained with Ni-Mg-Al catalysts. However, they rapidly lost their activity. Instead Ni-Raney catalysts kept its original activity even after several hydrogenation runs.
Resumo:
Water-in-crude oil emulsions are formed during petroleum production and asphaltenes play an important role in their stabilization. Demulsifiers are added to destabilize such emulsions,however the demulsification mechanism is not completely known. In this paper, the performances of commercial poly(ethylene oxide-b-propylene oxide) demulsifiers were studied using synthetic water-in-oil emulsions and model-systems (asphaltenes in organic solvent). No change in the asphaltene aggregate size induced by the demulsifier was observed. The demulsification performance decreased as the asphaltene aggregate size increased, so it can be suggested that the demulsification mechanism is correlated to the voids between the aggregates adsorbed on the water droplets surface.