66 resultados para OBSTRUCTIVE LUNG DISEASE
Resumo:
We hypothesized that chronic oral administration of the phosphodiesterase-5 inhibitor sildenafil could improve the exercise capacity and pulmonary hemodynamics in patients with pulmonary arterial hypertension (PAH) on the basis of previous short-term studies. We tested this hypothesis in 14 subjects with PAH, including seven patients with the idiopathic form and seven patients with atrial septal defects, but no other congenital heart abnormalities. Patients were subjected to a 6-min walk test and dyspnea was graded according to the Borg scale. Pulmonary flow and pressures were measured by Doppler echocardiography. Patients were given sildenafil, 75 mg orally three times a day, and followed up for 1 year. Sildenafil therapy resulted in the following changes: increase in the 6-min walk distance from a median value of 387 m (range 0 to 484 m) to 462 m (range 408 to 588 m; P < 0.01), improvement of the Borg dyspnea score from 4.0 (median value) to 3.0 (P < 0.01), and increased pulmonary flow (velocity-time integral) from a median value of 0.12 (range 0.08 to 0.25) to 0.23 (range 0.11 to 0.40; P < 0.01) with no changes in pulmonary pressures. In one patient with pulmonary veno-occlusive disease diagnosed by a lung biopsy, sildenafil had a better effect on the pulmonary wedge pressure than inhaled nitric oxide (15 and 29 mmHg, respectively, acute test). He walked 112 m at baseline and 408 m at one year. One patient died at 11 months of treatment. No other relevant events occurred. Thus, chronic administration of sildenafil improves the physical capacity of PAH patients and may be beneficial in selected cases of veno-occlusive disease.
Resumo:
Endothelial function (EF) plays an important role in the onset and clinical course of atherosclerosis, although its relationship with the presence and extent of coronary artery disease (CAD) has not been well defined. We evaluated EF and the ST segment response to an exercise test in patients with a broad spectrum of CAD defined by coronary angiography. Sixty-two patients submitted to diagnostic catheterization for the evaluation of chest pain or ischemia in a provocative test were divided into three groups according to the presence and severity of atherosclerotic lesions (AL): group 1: normal coronaries (N = 19); group 2: CAD with AL <70% (N = 17); group 3: CAD with AL ≥70% (N = 26). EF was evaluated by the percentage of flow-mediated dilatation (%FMD) in the brachial artery during reactive hyperemia induced by occlusion of the forearm with a pneumatic cuff for 5 min. Fifty-four patients were subjected to an exercise test. Gender and age were not significantly correlated with %FMD. EF was markedly reduced in both groups with CAD (76.5 and 73.1% vs 31.6% in group 1) and a higher frequency of ischemic alterations in the ST segment (70.8%) was observed in the group with obstructive CAD with AL ≥70% during the exercise test. Endothelial dysfunction was observed in patients with CAD, irrespective of the severity of injury. A significantly higher frequency of ischemic alterations in the ST segment was observed in the group with obstructive CAD. EF and exercise ECG differed among the three groups and may provide complementary information for the assessment of CAD.
Resumo:
High mobility group box 1 (HMGB1) was discovered as a novel late-acting cytokine that contributes to acute lung injury (ALI). However, the contribution of HMGB1 to two-hit-induced ALI has not been investigated. To examine the participation of HMGB1 in the pathogenesis of ALI caused by the two-hit hypothesis, endotoxin was injected intratracheally in a hemorrhagic shock-primed ALI mouse model. Concentrations of HMGB1 in the lung of the shock group were markedly increased at 16 h (1.63 ± 0.05, compared to the control group: 1.02 ± 0.03; P < 0.05), with the highest concentration being observed at 24 h. In the sham/lipopolysaccharide group, lung HMGB1 concentrations were found to be markedly increased at 24 h (1.98 ± 0.08, compared to the control group: 1.07 ± 0.03; P < 0.05). Administration of lipopolysaccharide to the hemorrhagic shock group resulted in a notable HMGB1 increase by 4 h, with a further increase by 16 h. Intratracheal lipopolysaccharide injection after hemorrhagic shock resulted in the highest lung leak at 16 h (2.68 ± 0.08, compared to the control group: 1.05 ± 0.04; P < 0.05). Compared to the hemorrhagic shock/lipopolysaccharide mice, blockade of HMGB1 at the same time as lipopolysaccharide injection prevented significantly pulmonary tumor necrosis factor-alpha, interleukin-1beta and myeloperoxidase. Lung leak was also markedly reduced at 16 h; blockade of HMGB1 24 h after lipopolysaccharide injection failed to alter lung leak or myeloperoxidase at 48 h. Our observations suggest that HMGB1 plays a key role as a late mediator when lipopolysaccharide is injected after hemorrhagic shock-primed ALI and the kinetics of its release differs from that of one-hit ALI. The therapeutic window to suppress HMGB1 activity should not be delayed to 24 h after the disease onset.
Resumo:
Small cell lung cancer (SCLC) is an aggressive disease, representing 15% of all cases of lung cancer, has high metastatic potential and low prognosis that urgently demands the development of novel therapeutic approaches. One of the proposed approaches has been the down-regulation of BCL2, with poorly clarified and controversial therapeutic value regarding SCLC. The use of anti-BCL2 small interfering RNA (siRNA) in SCLC has never been reported. The aim of the present study was to select and test the in vitro efficacy of anti-BCL2 siRNA sequences against the protein and mRNA levels of SCLC cells, and their effects on cytotoxicity and chemosensitization. Two anti-BCL2 siRNAs and the anti-BCL2 G3139 oligodeoxynucleotide (ODN) were evaluated in SCLC cells by the simultaneous determination of Bcl-2 and viability using a flow cytometry method recently developed by us in addition to Western blot, real-time reverse-transcription PCR, and cell growth after single and combined treatment with cisplatin. In contrast to previous reports about the use of ODN, a heterogeneous and up to 80% sequence-specific Bcl-2 protein knockdown was observed in the SW2, H2171 and H69 SCLC cell lines, although without significant sequence-specific reduction of cell viability, cell growth, or sensitization to cisplatin. Our results question previous data generated with antisense ODN and supporting the present concept of the therapeutic interest in BCL2 silencing per se in SCLC, and support the growing notion of the necessity of a multitargeting molecular approach for the treatment of cancer.
Resumo:
Meconium aspiration syndrome causes respiratory failure after birth and in vivo monitoring of pulmonary edema is difficult. The objective of the present study was to assess hemodynamic changes and edema measured by transcardiopulmonary thermodilution in low weight newborn piglets. Additionally, the effect of early administration of sildenafil (2 mg/kg vo, 30 min after meconium aspiration) on this critical parameter was determined in the meconium aspiration syndrome model. Thirty-eight mechanically ventilated anesthetized male piglets (Sus scrofa domestica) aged 12 to 72 h (1660 ± 192 g) received diluted fresh human meconium in the airway in order to evoke pulmonary hypertension (PHT). Extravascular lung water was measured in vivo with a PiCCO monitor and ex vivo by the gravimetric method, resulting in an overestimate of 3.5 ± 2.3 mL compared to the first measurement. A significant PHT of 15 Torr above basal pressure was observed, similar to that of severely affected humans, leading to an increase in ventilatory support. The vascular permeability index increased 57%, suggesting altered alveolocapillary membrane permeability. Histology revealed tissue vessel congestion and nonspecific chemical pneumonitis. A group of animals received sildenafil, which prevented the development of PHT and lung edema, as evaluated by in vivo monitoring. In summary, the transcardiopulmonary thermodilution method is a reliable tool for monitoring critical newborn changes, offering the opportunity to experimentally explore putative therapeutics in vivo. Sildenafil could be employed to prevent PHT and edema if used in the first stages of development of the disease.
Resumo:
The present study screened potential genes related to lung adenocarcinoma, with the aim of further understanding disease pathogenesis. The GSE2514 dataset including 20 lung adenocarcinoma and 19 adjacent normal tissue samples from 10 patients with lung adenocarcinoma aged 45-73 years was downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs) between the two groups were screened using the t-test. Potential gene functions were predicted using functional and pathway enrichment analysis, and protein-protein interaction (PPI) networks obtained from the STRING database were constructed with Cytoscape. Module analysis of PPI networks was performed through MCODE in Cytoscape. In total, 535 upregulated and 465 downregulated DEGs were identified. These included ATP5D, UQCRC2, UQCR11 and genes encoding nicotinamide adenine dinucleotide (NADH), which are mainly associated with mitochondrial ATP synthesis coupled electron transport, and which were enriched in the oxidative phosphorylation pathway. Other DEGs were associated with DNA replication (PRIM1, MCM3, and RNASEH2A), cell surface receptor-linked signal transduction and the enzyme-linked receptor protein signaling pathway (MAPK1, STAT3, RAF1, and JAK1), and regulation of the cytoskeleton and phosphatidylinositol signaling system (PIP5K1B, PIP5K1C, and PIP4K2B). Our findings suggest that DEGs encoding subunits of NADH, PRIM1, MCM3, MAPK1, STAT3, RAF1, and JAK1 might be associated with the development of lung adenocarcinoma.