73 resultados para Nuisance algae
Resumo:
The diversity of algal banks composed of species out the genera Gracilaria Greville and Hypnea J.V. Lamouroux have been impacted by commercial exploitation and coastal eutrophication. The present study sought to construct dynamic models based on algal physiology to simulate seasonal variations in the biomasses of Gracilaria and Hypnea an intertidal reef at Piedade Beach in Jaboatão dos Guararapes, Pernambuco State, Brazil. Five 20 × 20 cm plots in a reef pool on a midlittoral reef platform were randomly sampled during April, June, August, October, and December/2009 and in January and March/2010. Water temperature, pH, irradiance, oxygen and salinity levels as well as the concentrations of ammonia, nitrate and phosphate were measured at the sampling site. Forcing functions were employed in the model to represent abiotic factors, and algal decay was simulated with a dispersal function. Algal growth was modeled using a logistic function and was found to be sensitive to temperature and salinity. Maximum absorption rates of ammonia and phosphate were higher in Hypnea than in Gracilaria, indicating that the former takes up nutrients more efficiently at higher concentrations. Gracilaria biomass peaked at approximately 120 g (dry weight m-2) in March/2010 and was significantly lower in August/2009; Hypnea biomasses, on the other hand, did not show any significant variations among the different months, indicating that resource competition may influence the productivity of these algae.
Resumo:
This is a review of the research undertaken since 1971 on the behavior and physiological ecology of sloths. The animals exhibit numerous fascinating features. Sloth hair is extremely specialized for a wet tropical environment and contains symbiotic algae. Activity shows circadian and seasonal variation. Nutrients derived from the food, particularly in Bradypus, only barely match the requirements for energy expenditure. Sloths are hosts to a fascinating array of commensal and parasitic arthropods and are carriers of various arthropod-borne viruses. Sloths are known reservoirs of the flagellate protozoan which causes leishmaniasis in humans, and may also carry trypanosomes and the protozoan Pneumocystis carinii.
Resumo:
Fucans, a family of sulfated polysaccharides present in brown seaweed, have several biological activities. Their use as drugs would offer the advantage of no potential risk of contamination with viruses or particles such as prions. A fucan prepared from Spatoglossum schröederi was tested as a possible inhibitor of cell-matrix interactions using wild-type Chinese hamster ovary cells (CHO-K1) and the mutant type deficient in xylosyltransferase (CHO-745). The effect of this polymer on adhesion properties with specific extracellular matrix components was studied using several matrix proteins as substrates for cell attachment. Treatment with the polymer inhibited the adhesion of fibronectin to both CHO-K1 (2 x 10(5))()and CHO-745 (2 x 10(5) and 5 x 10(5)) cells. No effect was detected with laminin, using the two cell types. On the other hand, adhesion to vitronectin was inhibited in CHO-K1 cells and adhesion to type I collagen was inhibited in CHO-745 cells. In spite of this inhibition, the fucan did not affect either cell proliferation or cell cycle. These results demonstrate that this polymer is a new anti-adhesive compound with potential pharmacological applications.
Resumo:
We report the detection of insulin-like antigens in a large range of species utilizing a modified ELISA plate assay and Western blotting. We tested the leaves or aerial parts of species of Rhodophyta (red alga), Bryophyta (mosses), Psilophyta (whisk ferns), Lycopodophyta (club mosses), Sphenopsida (horsetails), gymnosperms, and angiosperms, including monocots and dicots. We also studied species of fungi and a cyanobacterium, Spirulina maxima. The wide distribution of insulin-like antigens, which in some cases present the same electrophoretic mobility as bovine insulin, together with results recently published by us on the amino acid sequence of an insulin isolated from the seed coat of jack bean (Canavalia ensiformis) and from the developing fruits of cowpea (Vigna unguiculata), suggests that pathways depending on this hormone have been conserved through evolution.
Resumo:
Fucan is a term used to denote a family of sulfated L-fucose-rich polysaccharides which are present in the extracellular matrix of brown seaweed and in the egg jelly coat of sea urchins. Plant fucans have several biological activities, including anticoagulant and antithrombotic, related to the structural and chemical composition of polysaccharides. We have extracted sulfated polysaccharides from the brown seaweed Dictyota menstrualis by proteolytic digestion, followed by separation into 5 fractions by sequential acetone precipitation. Gel electrophoresis using 0.05 M 1,3-diaminopropane-acetate buffer, pH 9.0, stained with 0.1% toluidine blue, showed the presence of sulfated polysaccharides in all fractions. The chemical analyses demonstrated that all fractions are composed mainly of fucose, xylose, galactose, uronic acid, and sulfate. The anticoagulant activity of these heterofucans was determined by activated partial thromboplastin time (APTT) using citrate normal human plasma. Only the fucans F1.0v and F1.5v showed anticoagulant activity. To prolong the coagulation time to double the baseline value in the APTT, the required concentration of fucan F1.0v (20 µg/ml) was only 4.88-fold higher than that of the low molecular weight heparin Clexane® (4.1 µg/ml), whereas 80 µg/ml fucan 1.5 was needed to obtain the same effect. For both fucans this effect was abolished by desulfation. These polymers are composed of fucose, xylose, uronic acid, galactose, and sulfate at molar ratios of 1.0:0.8:0.7:0.8:0.4 and 1.0:0.3:0.4:1.5:1.3, respectively. This is the fist report indicating the presence of a heterofucan with higher anticoagulant activity from brown seaweed.
Resumo:
Xylofucoglucuronan from Spatoglossum schröederi algae was tested as a support for antibiotic immobilization. The polysaccharide (20 mg in 6 ml) was first activated using carbodiimide, 1-ethyl-3-(3-dimethylamino-propyl)carbodiimide methiodide (20 mg in 2 ml), under stirring for 1 h at 25ºC and pH from 4.5 to 5.0. After adjusting the pH to 8.0, either gentamicin or amikacin (62.5 mg in 1.25 ml) was then immobilized on this chemically modified polysaccharide with shaking for 24 h in a cold room. Infrared spectra of the activated carbodiimide xylofucoglucuronan showed two bands to carbonyl (C = O at 1647.9 and 1700.7 cm-1) and to amide (CÝ-NH2) groups (1662.8 and 1714.0 cm-1). Microbial characterization of the derivatives was carried out by the disk diffusion method using Staphylococcus aureus or Klebsiella pneumoniae incorporated in Müller Hinton medium. Inhibition halos of bacterial growth were observed for the antibiotics immobilized on this sulfated heteropolysaccharide before and after dialysis. However, the halos resulting from the samples after dialysis were much smaller, suggesting that dialysis removed either non-covalently bound antibiotic or other small molecules. In contrast, bacterial growth was not inhibited by either xylofucoglucuronan or its activated form or by gentamicin or amikacin after dialysis. An additional experiment was carried out which demonstrated that the sulfated heteropolysaccharide was hydrolyzed by the microorganism. Therefore, the antibiotic immobilized on xylofucoglucuronan can be proposed as a controlled drug delivery system. Furthermore, this sulfated heteropolysaccharide can be extracted easily from sea algae Spatoglossum schröederi.
Resumo:
Bryothamnion seaforthii, a red alga common to the Northeastern coast of Brazil, was used to prepare the protein fraction F0/60 by ammonium sulfate precipitation. The chromatography of F0/60 on DEAE-Sephadel column resulted in two lectin fractions, PI and PII, which have antinociceptive properties in rodents. We determined the antinociceptive activity of the PII fraction and of a carbohydrate-containing fraction (CF) in mice. The CF was prepared from the dried algae, after digestion with 100 mM sodium acetate, pH 6.0, containing 5 mM cysteine, EDTA and 0.4% papain, at 60ºC. A 10% cetylpyridinium chloride was added to the filtrate, and the precipitate was dissolved with 2 M NaCl:ethanol (100:15, v/v) followed by the carbohydrate precipitation with ethanol. The final precipitate, in acetone, was dried at 25ºC. The PII fraction markedly inhibited acetic acid-induced abdominal writhing after ip administration (control: 27.1 ± 2.20; PII 0.1 mg/kg: 5.5 ± 1.85; 1 mg/kg: 1.6 ± 0.72 writhes/20 min) and after oral administration (control: 32.0 ± 3.32; PII 0.1 mg/kg: 13.1 ± 2.50; 1 mg/kg: 9.4 ± 3.96 writhes/20 min). PII was also effective against both phases of pain induced by 1% formalin (control, ip: 48.2 ± 2.40 and 27.7 ± 2.56 s; PII: 1 mg/kg, ip: 34.3 ± 5.13 and 5.6 ± 2.14 s; control, po: 44.5 ± 3.52 and 25.6 ± 2.39 s; PII 5 mg/kg, po: 26.5 ± 4.67 and 15.3 ± 3.54 s for the 1st and 2nd phases, respectively) and in the hot-plate test. The CF (ip) also displayed significant antinociceptive properties in all tests but at higher doses (1 and 5 mg/kg, ip and po). Thus, CF at the dose of 5 mg/kg significantly inhibited writhes (ip: 7.1 ± 2.47 and po: 14.5 ± 2.40 writhes/20 min) as well as the 1st (po: 19.6 ± 1.74 s) and 2nd (po: 7.1 ± 2.24 s) phases of the formalin test compared to controls ip and po. The antinociceptive effects of both the PII and CF in the formalin and hot-plate tests were prevented at least partially by pretreatment with the opioid receptor antagonist naloxone (2 mg/kg, sc). Moreover, both fractions retained antinociceptive activity in the acetic acid-induced writhing test following heating, a procedure which abolished the hemagglutinating activity of the fraction, presumably due to lectins also present. Finally, both fractions also prolonged the barbiturate-induced sleeping time. These results indicate that carbohydrate molecules present in the PII (26.8% carbohydrate) and CF (21% of the alga dried weight) obtained from B. seaforthii display pronounced antinociceptive activity which is resistant to heat denaturation and is mediated by an opioid mechanism, as indicated by naloxone inhibition.
Resumo:
The brown algae Padina gymnospora contain different fucans. Powdered algae were submitted to proteolysis with the proteolytic enzyme maxataze. The first extract of the algae was constituted of polysaccharides contaminated with lipids, phenols, etc. Fractionation of the fucans with increasing concentrations of acetone produced fractions with different proportions of fucose, xylose, uronic acid, galactose, and sulfate. One of the fractions, precipitated with 50% acetone (v/v), contained an 18-kDa heterofucan (PF1), which was further purified by gel-permeation chromatography on Sephadex G-75 using 0.2 M acetic acid as eluent and characterized by agarose gel electrophoresis in 0.05 M 1,3 diaminopropane/acetate buffer at pH 9.0, methylation and nuclear magnetic resonance spectroscopy. Structural analysis indicates that this fucan has a central core consisting mainly of 3-ß-D-glucuronic acid 1-> or 4-ß-D-glucuronic acid 1 ->, substituted at C-2 with alpha-L-fucose or ß-D-xylose. Sulfate groups were only detected at C-3 of 4-alpha-L-fucose 1-> units. The anticoagulant activity of the PF1 (only 2.5-fold lesser than low molecular weight heparin) estimated by activated partial thromboplastin time was completely abolished upon desulfation by solvolysis in dimethyl sulfoxide, indicating that 3-O-sulfation at C-3 of 4-alpha-L-fucose 1-> units is responsible for the anticoagulant activity of the polymer.
Resumo:
Mercury is a xenobiotic metal that is a highly deleterious environmental pollutant. The biotransformation of mercury chloride (HgCl2) into methylmercury chloride (CH3HgCl) in aquatic environments is well-known and humans are exposed by consumption of contaminated fish, shellfish and algae. The objective of the present study was to determine the changes induced in vitro by two mercury compounds (HgCl2 and CH3HgCl) in cultured human lymphocytes. Short-term human leukocyte cultures from 10 healthy donors (5 females and 5 males) were set-up by adding drops of whole blood in complete medium. Cultures were separately and simultaneously treated with low doses (0.1 to 1000 µg/l) of HgCl2 and CH3HgCl and incubated at 37ºC for 48 h. Genotoxicity was assessed by chromosome aberrations and polyploid cells. Mitotic index was used as a measure of cytotoxicity. A significant increase (P < 0.05) in the relative frequency of chromosome aberrations was observed for all concentrations of CH3HgCl when compared to control, whether alone or in an evident sinergistic combination with HgCl2. The frequency of polyploid cells was also significantly increased (P < 0.05) when compared to control after exposure to all concentrations of CH3HgCl alone or in combination with HgCl2. CH3HgCl significantly decreased (P < 0.05) the mitotic index at 100 and 1000 µg/l alone, and at 1, 10, 100, and 1000 µg/l when combined with HgCl2, showing a synergistic cytotoxic effect. Our data showed that low concentrations of CH3HgCl might be cytotoxic/genotoxic. Such effects may indicate early cellular changes with possible biological consequences and should be considered in the preliminary evaluation of the risks of populations exposed in vivo to low doses of mercury.
Resumo:
The antinociceptive effects of a lectin (LEC) isolated from the marine alga Amansia multifida were determined in Swiss mice. The LEC (1, 5, and 10 mg/kg) inhibited acetic acid-induced abdominal writhings in a dose-dependent manner after intraperitoneal or oral administration. A partial but significant inhibition of writhings was observed after the combination of LEC (10 mg/kg) with avidin (1 mg/kg), a potent inhibitor of the hemmaglutinant activity of the lectin. However, total writhing inhibition was demonstrable in the group of mice treated with LEC plus mannose (1 mg/kg), as compared to LEC alone or to control groups. Furthermore, avidin and mainly mannose also play a role in antinociception, somehow facilitating the interaction of LEC with its active cell sites. In the formalin test, although both phases of the response were significantly inhibited, the effect of LEC was predominant during phase 2, causing inhibition of licking time that ranged from 48 to 88% after oral (5 and 10 mg/kg) and intraperitoneal (1 to 5 mg/kg) administration. As is the case with morphine, the effect of LEC (2 mg/kg) was reversed by naloxone (2 mg/kg), indicating the involvement of the opioid system. LEC was also effective in the hot-plate test, producing inhibitory responses to the thermal stimulus, and its effects were blocked by naloxone. In the pentobarbital-induced sleeping time, although LEC did not alter the onset of sleep significantly, it increased the time of sleep within the same dose range compared to control. These results show that LEC presents antinociceptive effects of both central and peripheral origin, possibly involving the participation of the opioid system.
Resumo:
The aim of the present paper was to provide the evidences for the antioxidant activity in Halimeda incrassata (Ellis) Lamouroux aqueous extracts obtained after simple water extraction of the fresh algae at room temperature (23°C). Previously in the literature, only antioxidant activity associated to carotenoids fractions of seaweeds has been reported. From different species of seaweeds, Halimeda incrassata aqueous extract exhibited the highest antioxidant activity on the inhibition of TBARS formed during the spontaneous lipid peroxidation of rat brain homogenates with an IC50 of 0.340mg.mL-1. Halimeda incrassata aqueous extract (0.5mg.mL-1), was also capable of decreasing the in vitro generation of hydrogen peroxide by two distinct metabolic pathways involving glutamic and malonic acids. Also, Halimeda incrassata (at doses of 50, 100 and 200mg.Kg-1) showed a neuroprotective effect in vivo on the gerbil model of bilateral carotid occlusion because of decreasing the locomotor and exploratory activity induced by ischemia. In summary, Halimeda incrassata aqueous extracts exhibit antioxidant properties in different in vitro as well as in vivo models which could be explained by the presence of several hydrosoluble compounds. Further studies on this way are necessary to elucidate the precise structure of these compounds. Low toxicity of most seaweeds to humans, but particularly of Halimeda genus may favor its use as functional food.
Resumo:
The aim of this research was to study the effect of air-temperature and diet composition on the mass transfer kinetics during the drying process of pellets used for Japanese Abalone (Haliotis discus hannai) feeding. In the experimental design, three temperatures were used for convective drying, as well as three different diet compositions (Diets A, B and C), in which the amount of fishmeal, spirulin, algae, fish oil and cornstarch varied. The water diffusion coefficient of the pellets was determined using the equation of Fick's second law, which resulted in values between 0.84-1.94×10-10 m²/s. The drying kinetics was modeled using Page, Modified Page, Root of time, Exponential, Logarithmic, Two-Terms, Modified Henderson-Pabis and Weibull models. In addition, two new models, referred to as 'Proposed' models 1 and 2, were used to simulate this process. According to the statistical tests applied, the models that best fitted the experimental data were Modified Henderson-Pabis, Weibull and Proposed model 2, respectively. Bifactorial analysis of variance ANOVA showed that Diet A (fishmeal 44%, spirulin 9%, fish oil 1% and cornstarch 36%) presented the highest diffusion coefficient values, which were favored by the temperature increase in the drying process.
Resumo:
This study aims to optimize an alternative method of extraction of carrageenan without previous alkaline treatment and ethanol precipitation using Response Surface Methodology (RSM). In order to introduce an innovation in the isolation step, atomization drying was used reducing the time for obtaining dry carrageenan powder. The effects of extraction time and temperature on yield, gel strength, and viscosity were evaluated. Furthermore, the extracted material was submitted to structural analysis, by infrared spectroscopy and nuclear magnetic resonance spectroscopy (¹H-NMR), and chemical composition analysis. Results showed that the generated regression models adequately explained the data variation. Carrageenan yield and gel viscosity were influenced only by the extraction temperature. However, gel strength was influenced by both, extraction time and extraction temperature. Optimal extraction conditions were 74 ºC and 4 hours. In these conditions, the carrageenan extract properties determined by the polynomial model were 31.17%, 158.27 g.cm-2, and 29.5 cP for yield, gel strength, and viscosity, respectively, while under the experimental conditions they were 35.8 ± 4.68%, 112.50 ± 4.96 g.cm-2, and 16.01 ± 1.03 cP, respectively. The chemical composition, nuclear magnetic resonance spectroscopy, and infrared spectroscopy analyses showed that the crude carrageenan extracted is composed mainly of κ-carrageenan.