65 resultados para Multiple Antigen Peptide System


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the human central nervous system. Although its etiology is unknown, the accumulation and activation of mononuclear cells in the central nervous system are crucial to its pathogenesis. Chemokines have been proposed to play a major role in the recruitment and activation of leukocytes in inflammatory sites. They are divided into subfamilies on the basis of the location of conserved cysteine residues. We determined the levels of some CC and CXC chemokines in the cerebrospinal fluid (CSF) of 23 relapsing-remitting MS patients under interferon-ß-1a therapy and 16 control subjects using ELISA. MS patients were categorized as having active or stable disease. CXCL10 was significantly increased in the CSF of active MS patients (mean ± SEM, 369.5 ± 69.3 pg/mL) when compared with controls (178.5 ± 29.1 pg/mL, P < 0.05). CSF levels of CCL2 were significantly lower in active MS (144.7 ± 14.4 pg/mL) than in controls (237.1 ± 16.4 pg/mL, P < 0.01). There was no difference in the concentration of CCL2 and CXCL10 between patients with stable MS and controls. CCL5 was not detectable in the CSF of most patients or controls. The qualitative and quantitative differences of chemokines in CSF during relapses of MS suggest that they may be useful as a marker of disease activity and of the mechanisms involved in the pathogenesis of the disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our aim was to construct a recombinant adenovirus co-expressing truncated human prostate-specific membrane antigen (tPSMA) and mouse 4-1BBL genes and to determine its effect on dendritic cells (DCs) generated from bone marrow suspensions harvested from C57BL/6 mice for which the effect of 4-1BBL on DCs is not clear, especially during DCs processing tumor-associated antigen. Replication deficient adenovirus AdMaxTM Expression System was used to construct recombinant adenovirus Ad-tPSMA-internal ribosome entry site-mouse 4-1BBL (Ad-tPSMA-IRES-m4-1BBL) and Ad-enhanced green fluorescent protein. Day 7 proliferating DC aggregates generated from C57BL/6 mice were collected as immature DCs and further mature DCs were obtained by lipopolysaccharide activated immature DCs. After DCs were exposed to the recombinant adenovirus with 250 multiplicity of infection, the expression of tPSMA and m4-1BBL proteins were detected by Western blot, and the apoptosis and phenotype of DCs were analyzed by flow cytometry. Cytokines (IL-6 and IL-12) in the supernatant were detected by enzyme-linked immunosorbent assay (ELISA). Proliferation of T cells was detected by allogeneic mixed lymphocyte reactions. The tPSMA and m4-1BBL proteins were expressed correctly. The apoptosis rate of DCs transfected with Ad-tPSMA-IRES-m4-1BBL was 14.6%, lower than that of control DCs. The expression of co-stimulatory molecules [CD80 (81.6 ± 5.4%) and CD86 (80.13 ± 2.81%)] up-regulated in Ad-tPSMA-IRES-m4-1BBL-pulsed DCs, and the level of IL-6 (3960.2 ± 50.54 pg/mL) and IL-12 (249.57 ± 12.51 pg/mL) production in Ad-tPSMA-IRES-m4-1BBL-transduced DCs were significantly higher (P < 0.05) than those in control DCs. Ad-tPSMA-IRES-m4-1BBL induced higher T-cell proliferation (OD450 = 0.614 ± 0.018), indicating that this recombinant adenovirus can effectively enhance the activity of DCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distal cytoplasmic motifs of leukemia inhibitory factor receptor α-chain (LIFRα-CT3) can independently induce intracellular myeloid differentiation in acute myeloid leukemia (AML) cells by gene transfection; however, there are significant limitations in the potential clinical use of these motifs due to liposome-derived genetic modifications. To produce a potentially therapeutic LIFRα-CT3 with cell-permeable activity, we constructed a eukaryotic expression pcDNA3.0-TAT-CT3-cMyc plasmid with a signal peptide (ss) inserted into the N-terminal that codes for an ss-TAT-CT3-cMyc fusion protein. The stable transfection of Chinese hamster ovary (CHO) cells via this vector and subsequent selection by Geneticin resulted in cell lines that express and secrete TAT-CT3-cMyc. The spent medium of pcDNA3.0-TAT-CT3-cMyc-transfected CHO cells could be purified using a cMyc-epitope-tag agarose affinity chromatography column and could be detected via SDS-PAGE, with antibodies against cMyc-tag. The direct administration of TAT-CT3-cMyc to HL-60 cell culture media caused the enrichment of CT3-cMyc in the cytoplasm and nucleus within 30 min and led to a significant reduction of viable cells (P < 0.05) 8 h after exposure. The advantages of using this mammalian expression system include the ease of generating TAT fusion proteins that are adequately transcripted and the potential for a sustained production of such proteins in vitro for future AML therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physiological evidence indicates that the supraoptic nucleus (SON) is an important region for integrating information related to homeostasis of body fluids. Located bilaterally to the optic chiasm, this nucleus is composed of magnocellular neurosecretory cells (MNCs) responsible for the synthesis and release of vasopressin and oxytocin to the neurohypophysis. At the cellular level, the control of vasopressin and oxytocin release is directly linked to the firing frequency of MNCs. In general, we can say that the excitability of these cells can be controlled via two distinct mechanisms: 1) the intrinsic membrane properties of the MNCs themselves and 2) synaptic input from circumventricular organs that contain osmosensitive neurons. It has also been demonstrated that MNCs are sensitive to osmotic stimuli in the physiological range. Therefore, the study of their intrinsic membrane properties became imperative to explain the osmosensitivity of MNCs. In addition to this, the discovery that several neurotransmitters and neuropeptides can modulate their electrical activity greatly increased our knowledge about the role played by the MNCs in fluid homeostasis. In particular, nitric oxide (NO) may be an important player in fluid balance homeostasis, because it has been demonstrated that the enzyme responsible for its production has an increased activity following a hypertonic stimulation of the system. At the cellular level, NO has been shown to change the electrical excitability of MNCs. Therefore, in this review, we focus on some important points concerning nitrergic modulation of the neuroendocrine system, particularly the effects of NO on the SON.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Milk is an important source of bioactive compounds. Many of these compounds are released during fermentation and refrigerated storage. The aim of this study was to determine the release of peptides by lactic acid bacteria in commercial fermented milk during refrigerated storage. The size and profile of peptides were analyzed by polyacrylamide gel electrophoresis and sizeexclusion HPLC. During electrophoresis, it was observed that the peptides were released from caseins, whereas β-lactoglobulin was the whey protein with the highest degradation. HPLC analysis confirmed the pattern of peptide formation observed in electrophoresis. Two fractions lower than 2 kDa with aromatic amino acids in their structure were separated. These results were consistent with those reported for structures of peptides with antihypertensive activity. Therefore, the presence of aromatic amino acids in the peptide fractions obtained increases the likelihood of finding peptides with such activity in refrigerated commercial fermented milk. In conclusion, during cold storage, peptides with different molecular weights are released and accumulated. This could be due to the action of proteinases and peptidases of the proteolytic system in lactic acid bacteria.