67 resultados para Metal selectivity
Resumo:
Trinexapac-ethyl and sulfometuron-methyl are the most widely used ripeners in sugarcane. The application is performed by airborne spraying. Thus, if weather conditions are unfavorable, spray drift to neighboring areas may occur. The objective of this study was to assess the selectivity of the plant growth regulators trinexapac-ethyl and sulfometuron-methyl, used as sugarcane ripeners, to eucalyptus (Eucalyptus urograndis) young plants. The experiment was installed in an eucalyptus commercial yield area, in the municipality of Tambaú, state of São Paulo, Brazil, and arranged in a 2 x 8 factorial design in randomized blocks with four replications. The treatments studied were trinexapac-ethyl and sulfometuron-methyl, sprayed in eight doses, 0; 1.0; 2.5; 5.0; 10; 25; 50 and 100% of the dose used in sugarcane as ripeners (200 g ha-1 of trinexapac-ethyl and 15 g ha-1 of sulfometuron-methyl). Chemical ripeners were applied on eucalyptus plants with 48 cm in height on average; 10.1 branches; 4.5 mm of stem diameter and 44.3 cm of crown diameter, at 46 days after seeding. Trinexapac-ethyl was selective to eucalyptus and stimulated crown diameter growth. At higher doses, sulfometuron-methyl promoted severe noticeable injuries in eucalyptus plants, such as apical bud death. However, during the assessment period the plants recovered and the visual symptoms of phytotoxicity and growth alterations were not observed at 60 days after application. The plant growth regulators trinexapac-ethyl and sulfometuron-methyl were selective to eucalyptus young plants.
Resumo:
The objective of this study was to assess the selectivity herbicide saflufenacil for two sweet sorghum hybrids, when sprayed in preemergence and postemergence, besides the use of Na-bentazon as a 'safener' for saflufenacil. Three experiments were conducted, in pots, maintained in an ambient condition (second and third experiments) and in a greenhouse (first experiment). In each experiment a completely randomized distribution was used, with four replicates. In the first (2 x 6 factorial) two hybrids of sweet sorghum (CVSW 80007 and CVSW 80147) and six dosages (0; 35; 52.5; 70; 87.5 and 105 g ha-1) of saflufenacil were studied, applied in preemergence of the plants. In the second (2 x 5 factorial) the same hybrids of sweet sorghum sprayed in postemergence with saflufenacil (0; 35; 52.5; 70 and 87.5 g h-1) were assessed. In the third (4 x 5 factorial) the association of Na-bentazon (0; 240; 480 and 720 g ha-1) to saflufenacil (0.35; 52.5; 70 and 87.5 g ha-1) was studied, when sprayed in postemergence on the sweet sorghum plants (CVSW 80007). Hybrid CVSW 80147 was more tolerant to saflufenacil than hybrid CVSW 800007, in preemergence or postemergence applications. The variables that best assessed the sensibility of the sweet sorghum to saflufenacil were number of emerged plants, for preemergence applications, and dry matter of stem for postemergence. Na-bentazon showed promise for use as 'safener' in postemergence applications of saflufenacil in sweet sorghum for dosages up to 70 g ha-1.
Resumo:
ABSTRACT The aim of this work was to evaluate the selectivity of fomesafen alone or in a tank mixture with other preemergent herbicides, with or without S-metolachlor application in early postemergence in cotton plant, cultivar DP 555 BG RR(r). The design utilized was a randomized complete block, organized in a split-plot arrangement, with four replications. For that, 24 herbicides were evaluated with fomesafen (0.45 and 0.625 kg ha-1), prometryn (1.25 kg ha-1), diuron (1.25 kg ha-1), trifluralin (1.8 kg ha-1), and S-metolachlor (0.77 kg ha-1), applied as preemergent, with or without S-metolachlor (0.77 kg ha-1) applied in early postemergence. The variables evaluated were: phytotoxicity, insertion height of the first reproductive branch, plant height, stand, number of reproductive branches per plant, number of bolls per plant, bolls weight, and productivity of cotton seed. Fomesafen alone or in a tank mixture with preemergent prometryn, diuron, trifluralin and S-metolachlor was selective to cotton plant. Preemergent fomesafen isolated application followed by the application of S-metolachlor in early postemergence was also selective. However, on average, preemergent tank mixtures applied in association with preemergent S-metolachlor early application was not selective to cotton crop.
Resumo:
ABSTRACT Weeds have the potential to dramatically interfere in cassava cultivation, reducing its productive potential; however, there are few studies on the selective herbicides in this crop. Therefore, the objective was to evaluate in this work the selectivity and efficiency of sulfentrazone in cassava crops grown in sandy and clayey soils. Two experiments were carried out: The first one was carried out in sandy soil conditions in the conventional system; and the second one was carried out in clayey soil conditions in the no-tillage system. The experimental design was a randomized block with four replications. The treatments consisted in doses of 250, 500, 750 and 1,000 g ha-1 of sulfentrazone, and weeded and non-weeded controls. Sulfentrazone application in cassava crops has linearly reduced the production of roots in a proportion of 0.0153 and 0.0107 t ha-1 at each increment in grams of the active ingredient, respectively. It was concluded that sulfentrazone was not selective for cassava crops grown both in sandy and in clayey soil; however, it was highly effective in weed control in both soils.
Resumo:
The objective of this study was to identify intravascular ultrasound (IVUS), angiographic and metabolic parameters related to restenosis in patients with dysglycemia. Seventy consecutive patients (77 lesions) selected according to inclusion and exclusion criteria were evaluated by the oral glucose tolerance test and the determination of insulinemia after a successful percutaneous coronary intervention (PCI) with a bare-metal stent. The degree of insulin resistance was calculated by the homeostasis model assessment of insulin resistance (HOMA-IR). Six-month IVUS and angiogram follow-up were performed. Thirty-nine patients (55.7%) had dysglycemia. The restenosis rate in the dysglycemic group was 37.2 vs 23.5% in the euglycemic group (P = 0.299). The predictors of restenosis using bivariate analysis were reference vessel diameter (RVD): £2.93 mm (RR = 0.54; 95%CI = 0.05-0.78; P = 0.048), stent area (SA): <8.91 mm² (RR = 0.66; 95%CI = 0.24-0.85; P = 0.006), stent volume (SV): <119.75 mm³ (RR = 0.74; 95%CI = 0.38-0.89; P = 0.0005), HOMA-IR: >2.063 (RR = 0.44; 95%CI = 0.14-0.64; P = 0.027), and fasting plasma glucose (FPG): ≤108.8 mg/dL (RR = 0.53; 95%CI = 0.13-0.75; P = 0.046). SV was an independent predictor of restenosis by multivariable analysis. Dysglycemia is a common clinical condition in patients submitted to PCI. The degree of insulin resistance, FPG, RVD, SA, and SV were correlated with restenosis. SV was inversely correlated with an independent predictor of restenosis in patients treated with a bare-metal stent.
Resumo:
Most drugs function by binding reversibly to specific biological targets, and therapeutic effects generally require saturation of these targets. One means of decreasing required drug concentrations is incorporation of reactive metal centers that elicit irreversible modification of targets. A common approach has been the design of artificial proteases/nucleases containing metal centers capable of hydrolyzing targeted proteins or nucleic acids. However, these hydrolytic catalysts typically provide relatively low rate constants for target inactivation. Recently, various catalysts were synthesized that use oxidative mechanisms to selectively cleave/inactivate therapeutic targets, including HIV RRE RNA or angiotensin converting enzyme (ACE). These oxidative mechanisms, which typically involve reactive oxygen species (ROS), provide access to comparatively high rate constants for target inactivation. Target-binding affinity, co-reactant selectivity, reduction potential, coordination unsaturation, ROS products (metal-associated vsmetal-dissociated; hydroxyl vs superoxide), and multiple-turnover redox chemistry were studied for each catalyst, and these parameters were related to the efficiency, selectivity, and mechanism(s) of inactivation/cleavage of the corresponding target for each catalyst. Important factors for future oxidative catalyst development are 1) positioning of catalyst reduction potential and redox reactivity to match the physiological environment of use, 2) maintenance of catalyst stability by use of chelates with either high denticity or other means of stabilization, such as the square planar geometric stabilization of Ni- and Cu-ATCUN complexes, 3) optimal rate of inactivation of targets relative to the rate of generation of diffusible ROS, 4) targeting and linker domains that afford better control of catalyst orientation, and 5) general bio-availability and drug delivery requirements.
Resumo:
We investigated the GABA-induced inactivation of V2 neurons and terminals on the receptive field properties of this area in an anesthetized and paralyzedCebus apella monkey. Extracellular single-unit activity was recorded using tungsten microelectrodes in a monkey before and after pressure-injection of a 0.25 or 0.5 M GABA solution. The visual stimulus consisted of a bar moving in 8 possible directions. In total, 24 V2 neurons were studied before and after blocker injections in 4 experimental sessions following GABA injection into area V2. A group of 10 neurons were studied over a short period. An additional 6 neurons were investigated over a long period after the GABA injection. A third group of 8 neurons were studied over a very long period. Overall, these 24 neurons displayed an early (1-20 min) significant general decrease in excitability with concomitant changes in orientation or direction selectivity. GABA inactivation in area V2 produced robust inhibition in 80% and a significant change in directional selectivity in 60% of the neurons examined. These GABA projections are capable of modulating not only levels of spontaneous and driven activity of V2 neurons but also receptive field properties such as direction selectivity.