95 resultados para Mapping Sites
Resumo:
The quality of semi-detailed (scale 1:100.000) soil maps and the utility of a taxonomically based legend were assessed by studying 33 apparently homogeneous fields with strongly weathered soils in two regions in São Paulo State: Araras and Assis. An independent data set of 395 auger sites was used to determine purity of soil mapping units and analysis of variance within and between mapping units and soil classification units. Twenty three soil profiles were studied in detail. The studied soil maps have a high purity for some legend criteria, such as B horizon type (> 90%) and soil texture class (> 80%). The purity for the "trophic character" (eutrophic, dystrophic, allic) was only 55% in Assis. It was 88% in Araras, where many soil units had been mapped as associations. In both regions, the base status of clay-textured soils was generally better than suggested by the maps. Analysis of variance showed that mapping was successful for "durable" soil characteristics such as clay content (> 80% of variance explained) and cation exchange capacity (≥ 50% of variance explained) of 0-20 and 60-80 cm layers. For soil characteristics that are easily modified by management, such as base saturation of the 0-20 cm layer, the maps had explained very little (< 15%) of the total variance in the study areas. Intermediate results were obtained for base saturation of the 60-80 cm layer (56% in Assis; 42% in Araras). Variance explained by taxonomic groupings that formed the basis for the legend of the soil maps was similar to, often even smaller than, variance explained by mapping units. The conclusion is that map boundaries have been very carefully located, but descriptions of mapping units could be improved. In future mappings, this could possibly be done at low cost by (a) bulk sampling to remove short range variation and enhance visualization of spatial patterns at distances > 100 m; (b) taking advantage of correlations between easily measured soil characteristics and chemical soil properties and, (c) unbending the link between legend criteria and a taxonomic system. The maps are well suited to obtain an impression of land suitability for high-input farming. Additional field work and data on former land use/management are necessary for the evaluation of chemical properties of surface horizons.
Resumo:
Peatlands form in areas where net primary of organic matter production exceeds losses due to the decomposition, leaching or disturbance. Due to their chemical and physical characteristics, bogs can influence water dynamics because they can store large volumes of water in the rainy season and gradually release this water during the other months of the year. In Diamantina, Minas Gerais, Brazil, a peatland in the environmental protection area of Pau-de-Fruta ensures the water supply of 40,000 inhabitants. The hypothesis of this study is that the peat bogs in Pau-de-Fruta act as an environment for carbon storage and a regulator of water flow in the Córrego das Pedras basin. The objective of this study was to estimate the water volume and organic matter mass in this peatland and to study the influence of this environment on the water flow in the Córrego das Pedras basin. The peatland was mapped using 57 transects, at intervals of 100 m. Along all transects, the depth of the peat bog, the Universal Transverse Mercator (UTM) coordinates and altitude were recorded every 20 m and used to calculate the area and volume of the peatland. The water volume was estimated, using a method developed in this study, and the mass of organic matter based on samples from 106 profiles. The peatland covered 81.7 hectares (ha), and stored 497,767 m³ of water, representing 83.7 % of the total volume of the peat bog. The total amount of organic matter (OM) was 45,148 t, corresponding to 552 t ha-1 of OM. The peat bog occupies 11.9 % of the area covered by the Córrego das Pedras basin and stores 77.6 % of the annual water surplus, thus controlling the water flow in the basin and consequently regulating the water course.
Resumo:
The region of greatest variability on soil maps is along the edge of their polygons, causing disagreement among pedologists about the appropriate description of soil classes at these locations. The objective of this work was to propose a strategy for data pre-processing applied to digital soil mapping (DSM). Soil polygons on a training map were shrunk by 100 and 160 m. This strategy prevented the use of covariates located near the edge of the soil classes for the Decision Tree (DT) models. Three DT models derived from eight predictive covariates, related to relief and organism factors sampled on the original polygons of a soil map and on polygons shrunk by 100 and 160 m were used to predict soil classes. The DT model derived from observations 160 m away from the edge of the polygons on the original map is less complex and has a better predictive performance.
Resumo:
Soil surveys are the main source of spatial information on soils and have a range of different applications, mainly in agriculture. The continuity of this activity has however been severely compromised, mainly due to a lack of governmental funding. The purpose of this study was to evaluate the feasibility of two different classifiers (artificial neural networks and a maximum likelihood algorithm) in the prediction of soil classes in the northwest of the state of Rio de Janeiro. Terrain attributes such as elevation, slope, aspect, plan curvature and compound topographic index (CTI) and indices of clay minerals, iron oxide and Normalized Difference Vegetation Index (NDVI), derived from Landsat 7 ETM+ sensor imagery, were used as discriminating variables. The two classifiers were trained and validated for each soil class using 300 and 150 samples respectively, representing the characteristics of these classes in terms of the discriminating variables. According to the statistical tests, the accuracy of the classifier based on artificial neural networks (ANNs) was greater than of the classic Maximum Likelihood Classifier (MLC). Comparing the results with 126 points of reference showed that the resulting ANN map (73.81 %) was superior to the MLC map (57.94 %). The main errors when using the two classifiers were caused by: a) the geological heterogeneity of the area coupled with problems related to the geological map; b) the depth of lithic contact and/or rock exposure, and c) problems with the environmental correlation model used due to the polygenetic nature of the soils. This study confirms that the use of terrain attributes together with remote sensing data by an ANN approach can be a tool to facilitate soil mapping in Brazil, primarily due to the availability of low-cost remote sensing data and the ease by which terrain attributes can be obtained.
Resumo:
Digital information generates the possibility of a high degree of redundancy in the data available for fitting predictive models used for Digital Soil Mapping (DSM). Among these models, the Decision Tree (DT) technique has been increasingly applied due to its capacity of dealing with large datasets. The purpose of this study was to evaluate the impact of the data volume used to generate the DT models on the quality of soil maps. An area of 889.33 km² was chosen in the Northern region of the State of Rio Grande do Sul. The soil-landscape relationship was obtained from reambulation of the studied area and the alignment of the units in the 1:50,000 scale topographic mapping. Six predictive covariates linked to the factors soil formation, relief and organisms, together with data sets of 1, 3, 5, 10, 15, 20 and 25 % of the total data volume, were used to generate the predictive DT models in the data mining program Waikato Environment for Knowledge Analysis (WEKA). In this study, sample densities below 5 % resulted in models with lower power of capturing the complexity of the spatial distribution of the soil in the study area. The relation between the data volume to be handled and the predictive capacity of the models was best for samples between 5 and 15 %. For the models based on these sample densities, the collected field data indicated an accuracy of predictive mapping close to 70 %.
Resumo:
Peatlands are soil environments that store carbon and large amounts of water, due to their composition (90 % water), low hydraulic conductivity and a sponge-like behavior. It is estimated that peat bogs cover approximately 4.2 % of the Earth's surface and stock 28.4 % of the soil carbon of the planet. Approximately 612 000 ha of peatlands have been mapped in Brazil, but the peat bogs in the Serra do Espinhaço Meridional (SdEM) were not included. The objective of this study was to map the peat bogs of the northern part of the SdEM and estimate the organic matter pools and water volume they stock. The peat bogs were pre-identified and mapped by GIS and remote sensing techniques, using ArcGIS 9.3, ENVI 4.5 and GPS Track Maker Pro software and the maps validated in the field. Six peat bogs were mapped in detail (1:20,000 and 1:5,000) by transects spaced 100 m and each transect were determined every 20 m, the UTM (Universal Transverse Mercator) coordinates, depth and samples collected for characterization and determination of organic matter, according to the Brazilian System of Soil Classification. In the northern part of SdEM, 14,287.55 ha of peatlands were mapped, distributed over 1,180,109 ha, representing 1.2 % of the total area. These peatlands have an average volume of 170,021,845.00 m³ and stock 6,120,167 t (428.36 t ha-1) of organic matter and 142,138,262 m³ (9,948 m³ ha-1) of water. In the peat bogs of the Serra do Espinhaço Meridional, advanced stages of decomposing (sapric) organic matter predominate, followed by the intermediate stage (hemic). The vertical growth rate of the peatlands ranged between 0.04 and 0.43 mm year-1, while the carbon accumulation rate varied between 6.59 and 37.66 g m-2 year-1. The peat bogs of the SdEM contain the headwaters of important water bodies in the basins of the Jequitinhonha and San Francisco Rivers and store large amounts of organic carbon and water, which is the reason why the protection and preservation of these soil environments is such an urgent and increasing need.
Resumo:
Soil properties have an enormous impact on economic and environmental aspects of agricultural production. Quantitative relationships between soil properties and the factors that influence their variability are the basis of digital soil mapping. The predictive models of soil properties evaluated in this work are statistical (multiple linear regression-MLR) and geostatistical (ordinary kriging and co-kriging). The study was conducted in the municipality of Bom Jardim, RJ, using a soil database with 208 sampling points. Predictive models were evaluated for sand, silt and clay fractions, pH in water and organic carbon at six depths according to the specifications of the consortium of digital soil mapping at the global level (GlobalSoilMap). Continuous covariates and categorical predictors were used and their contributions to the model assessed. Only the environmental covariates elevation, aspect, stream power index (SPI), soil wetness index (SWI), normalized difference vegetation index (NDVI), and b3/b2 band ratio were significantly correlated with soil properties. The predictive models had a mean coefficient of determination of 0.21. Best results were obtained with the geostatistical predictive models, where the highest coefficient of determination 0.43 was associated with sand properties between 60 to 100 cm deep. The use of a sparse data set of soil properties for digital mapping can explain only part of the spatial variation of these properties. The results may be related to the sampling density and the quantity and quality of the environmental covariates and predictive models used.
Resumo:
In Brazil, grazing mismanagement may lead to soil and pasture degradation. To impede this process, integrated cropping systems such as silvopasture have been an effective alternative, allied with precision agriculture based on soil mapping for site-specific management. In this study, we aimed to define the soil property that best sheds light on the variability of eucalyptus and forage yield. The experiment was conducted in the 2011/12 crop year in Ribas do Rio Pardo, Mato Grosso do Sul State, Brazil. We analyzed linear and spatial correlations between eucalyptus traits and physical properties of a Typic Quartzipsamment at two depths (0.00-0.10 and 0.10-0.20 m). For that purpose, we set up a geostatistical grid for collection at 72 points. Gravimetric moisture in the 0.00-0.10 m layer is an important index of soil physical quality, showing correlation to eucalyptus circumference at breast height (CBH) in a Typic Quartzipsamment. With an increase in resistance to penetration in the soil surface layer, there is an increase in eucalyptus height and in neutral detergent fiber content in the forage crop. From a spatial point of view, the height of eucalyptus and the neutral detergent fiber of forage can be estimated by co-kriging analysis with soil resistance to penetration. Resistance to penetration values above 2.3 MPa indicated higher yielding sites.
Resumo:
ABSTRACT In recent years, geotechnologies as remote and proximal sensing and attributes derived from digital terrain elevation models indicated to be very useful for the description of soil variability. However, these information sources are rarely used together. Therefore, a methodology for assessing and specialize soil classes using the information obtained from remote/proximal sensing, GIS and technical knowledge has been applied and evaluated. Two areas of study, in the State of São Paulo, Brazil, totaling approximately 28.000 ha were used for this work. First, in an area (area 1), conventional pedological mapping was done and from the soil classes found patterns were obtained with the following information: a) spectral information (forms of features and absorption intensity of spectral curves with 350 wavelengths -2,500 nm) of soil samples collected at specific points in the area (according to each soil type); b) obtaining equations for determining chemical and physical properties of the soil from the relationship between the results obtained in the laboratory by the conventional method, the levels of chemical and physical attributes with the spectral data; c) supervised classification of Landsat TM 5 images, in order to detect changes in the size of the soil particles (soil texture); d) relationship between classes relief soils and attributes. Subsequently, the obtained patterns were applied in area 2 obtain pedological classification of soils, but in GIS (ArcGIS). Finally, we developed a conventional pedological mapping in area 2 to which was compared with a digital map, ie the one obtained only with pre certain standards. The proposed methodology had a 79 % accuracy in the first categorical level of Soil Classification System, 60 % accuracy in the second category level and became less useful in the categorical level 3 (37 % accuracy).
Resumo:
Análise e avaliação de web sites do governo federal brasileiro, especificamente dos ministérios pertencentes aos setores constantes do programa Sociedade da Informação. O trabalho foi realizado mediante aplicação de lista de critérios e recomendações ergonômicas. Os critérios foram agrupados em quatro grandes quesitos: abrangência e propósito, conteúdo, planejamento visual/gráfico e funcionalidade. Concluiu-se que, com relação aos critérios adotados neste trabalho, os sites dos órgãos governamentais devem procurar maior adequação às recomendações ergonômicas.
Resumo:
The objective of this work was to investigate glyphosate adsorption by soils and its relationship with unoccupied binding sites for phosphate adsorption. Soil samples of three Chilean soils series - Valdivia (Andisol), Clarillo (Inceptisol) and Chicureo (Vertisol) - were incubated with different herbicide concentrations. Glyphosate remaining in solution was determined by adjusting a HPLC method with a UV detector. Experimental maximum adsorption capacity were 15,000, 14,300 and 4,700 mg g¹ for Valdivia, Clarillo, and Chicureo soils, respectively. Linear, Freundlich, and Langmuir models were used to describe glyphosate adsorption. Isotherms describing glyphosate adsorption differed among soils. Maximum adjusted adsorption capacity with the Langmuir model was 231,884, 17,874 and 5,670 mg g-1 for Valdivia, Clarillo, and Chicureo soils, respectively. Glyphosate adsorption on the Valdivia soil showed a linear behavior at the range of concentrations used and none of the adjusted models became asymptotic. The high glyphosate adsorption capacity of the Valdivia soil was probably a result of its high exchangeable Al, extractable Fe, and alophan and imogolite clay type. Adsorption was very much related to phosphate dynamics in the Valdivia soil, which showed the larger unoccupied phosphate binding sites. However relationship between unoccupied phosphate binding sites and glyphosate adsorption in the other two soils (Clarillo and Chicureo) was not clear.
Resumo:
The objective of this work was to select and use microsatellite markers, to map genomic regions associated with the genetic control of thermosensitive genic male sterility (TGMS) in rice. An F2 population, derived from the cross between fertile and TGMS indica lines, was used to construct a microsatellite-based genetic map of rice. The TGMS phenotype showed a continuous variation in the segregant population. A low level of segregation distortion was detected in the F2 (14.65%), whose cause was found to be zygotic selection. There was no evidence suggesting a cause-effect relationship between zygotic selection and the control of TGMS in this cross. A linkage map comprising 1,213.3 cM was constructed based on the segregation data of the F2 population. Ninety-five out of 116 microsatellite polymorphic markers were assembled into 11 linkage groups, with an average of 12.77 cM between two adjacent marker loci. The phenotypic and genotypic data allowed for the identification of three new quantitative trait loci (QTL) for thermosensitive genic male sterility in indica rice. Two of the QTL were mapped on chromosomes that, so far, have not been associated with the genetic control of the TGMS trait (chromosomes 1 and 12). The third QTL was mapped on chromosome 7, where a TGMS locus (tms2) has recently been mapped. Allelic tests will have to be developed, in order to clarify if the two regions are the same or not.
Resumo:
The objectives of this study were to detect quantitative trait loci (QTL) for protein content in soybean grown in two distinct tropical environments and to build a genetic map for protein content. One hundred eighteen soybean recombinant inbred lines (RIL), obtained from a cross between cultivars BARC 8 and Garimpo, were used. The RIL were cultivated in two distinct Brazilian tropical environments: Cascavel county, in Paraná, and Viçosa county, in Minas Gerais (24º57'S, 53º27'W and 20º45'S, 42º52'W, respectively). Sixty-six SSR primer pairs and 65 RAPD primers were polymorphic and segregated at a 1:1 proportion. Thirty poorly saturated linkage groups were obtained, with 90 markers and 41 nonlinked markers. For the lines cultivated in Cascavel, three QTL were mapped in C2, E and N linkage groups, which explained 14.37, 10.31 and 7.34% of the phenotypic variation of protein content, respectively. For the lines cultivated in Viçosa, two QTL were mapped in linkage groups G and #1, which explained 9.51 and 7.34% of the phenotypic variation of protein content. Based on the mean of the two environments, two QTL were identified: one in the linkage group E (9.90%) and other in the group L (7.11%). In order for future studies to consistently detect QTL effects of different environments, genotypes with greater stability should be used.
Resumo:
The objective of this work was to verify the existence of a lethal locus in a eucalyptus hybrid population, and to quantify the segregation distortion in the linkage group 3 of the Eucalyptus genome. A E. grandis x E. urophylla hybrid population, which segregates for rust resistance, was genotyped with 19 microsatellite markers belonging to linkage group 3 of the Eucalyptus genome. To quantify the segregation distortion, maximum likelihood (ML) models, specific to outbreeding populations, were used. These models consider the observed marker genotypes and the lethal locus viability as parameters. The ML solutions were obtained using the expectation‑maximization algorithm. A lethal locus in the linkage group 3 was verified and mapped, with high confidence, between the microssatellites EMBRA 189 e EMBRA 122. This lethal locus causes an intense gametic selection from the male side. Its map position is 25 cM from the locus which controls the rust resistance in this population.
Resumo:
The current high competition on Citrus industry demands from growers new management technologies for superior efficiency and sustainability. In this context, precision agriculture (PA) has developed techniques based on yield mapping and management systems that recognize field spatial variability, which contribute to increase profitability of commercial crops. Because spatial variability is often not perceived the orange orchards are still managed as uniform and adoption of PA technology on citrus farms is low. Thus, the objective of the present study was to characterize the spatial variability of three factors: fruit yield, soil fertility and occurrence of plant gaps caused by either citrus blight or huanglongbing (HLB) in a commercial Valencia orchard in Brotas, São Paulo State, Brazil. Data from volume, geographic coordinates and representative area of the bags used on harvest were recorded to generate yield points that were then interpolated to produce the yield map. Soil chemical characteristics were studied by analyzing samples collected along planting rows and inter-rows in 24 points distributed in the field. A map of density of tree gaps was produced by georeferencing individual gaps and later by counting the number of gaps within 500 m² cells. Data were submitted to statistical and geostatistical analyses. A t test was used to compare means of soil chemical characteristics between sampling regions. High variation on yield and density of tree gaps was observed from the maps. It was also demonstrated overlapping regions of high density of plant absence and low fruit yield. Soil fertility varied depending on the sampling region in the orchard. The spatial variability found on yield, soil fertility and on disease occurrence demonstrated the importance to adopt site specific nutrient management and disease control as tools to guarantee efficiency of fruit production.