127 resultados para MURINE HYPOPHOSPHATASIA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Actin-based motor protein requirements and nitric oxide (NO) production are important features of macrophage activity during phagocytosis or microbicidal processes. Different classes of myosins contribute directly or indirectly to phagocytosis by providing mechanical force for phagosome closure or organelle movement. Recent data have shown the presence of myosins IC, II, V and IXb in phagosomes of bone marrow-derived murine macrophages. In our investigation we demonstrated the presence of different classes of myosins in J774 macrophages. We also analyzed the effect of gamma interferon (IFN-gamma), with or without calcium ionophore or cytochalasin B, on myosins as well as on inducible nitric oxide synthase (iNOS) expression and NO production. Myosins IC, II, Va, VI and IXb were identified in J774 macrophages. There was an increase of myosin V expression in IFN-gamma-treated cells. iNOS expression was increased by IFN-gamma treatment, while calcium ionophore and cytochalasin B had a negative influence on both myosin and iNOS expression, which was decreased. The increases in NO synthesis were reflected by increased iNOS expression. Macrophages activated by IFN-gamma released significant amounts of NO when compared to control groups. In contrast, NO production by calcium ionophore- and cytochalasin B-treated cells was similar to that of control cells. These results suggest that IFN-gamma is involved in macrophage activation by stimulating protein production to permit both phagocytosis and microbicidal activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrated that 4 mM butyrate induces apoptosis in murine peritoneal macrophages in a dose- and time-dependent manner as indicated by studies of cell viability, flow cytometric analysis of annexin-V binding, DNA ladder pattern and the determination of hypodiploid DNA content. The activity of caspase-3 was enhanced during macrophage apoptosis induced by butyrate and the caspase inhibitor z-VAD-FMK (100 µM) inhibited the butyrate effect, indicating the major role of the caspase cascade in the process. The levels of butyrate-induced apoptosis in macrophages were enhanced by co-treatment with 1 µg/ml bacterial lipopolysaccharide (LPS). However, our data indicate that apoptosis induced by butyrate and LPS involves different mechanisms. Thus, LPS-induced apoptosis was only observed when macrophages were primed with IFN-gamma and was partially dependent on iNOS, TNFR1 and IRF-1 functions as determined in experiments employing macrophages from various knockout mice. In contrast, butyrate-induced macrophage apoptosis was highly independent of IFN-gamma priming and of iNOS, TNFR1 and IRF-1 functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Embryonic stem cells are totipotent cells derived from the inner cell mass of blastocysts. Recently, the development of appropriate culture conditions for the differentiation of these cells into specific cell types has permitted their use as potential therapeutic agents for several diseases. In addition, manipulation of their genome in vitro allows the creation of animal models of human genetic diseases and for the study of gene function in vivo. We report the establishment of new lines of murine embryonic stem cells from preimplantation stage embryos of 129/Sv mice. Most of these cells had a normal karyotype and an XY sex chromosome composition. The pluripotent properties of the cell lines obtained were analyzed on the basis of their alkaline phosphatase activity and their capacity to form complex embryoid bodies with rhythmically contracting cardiomyocytes. Two lines, USP-1 and USP-3, with the best in vitro characteristics of pluripotency were used in chimera-generating experiments. The capacity to contribute to the germ line was demonstrated by the USP-1 cell line. This cell line is currently being used to generate mouse models of human diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in glutathione levels were determined in tissues of 11- to 12-week-old Swiss albino mice at different stages of Dalton's lymphoma tumor growth and following cisplatin (8 mg/kg body weight, ip) treatment for 24-96 h, keeping 4-5 animals in each experimental group. Glutathione levels increased in spleen of tumor-bearing compared to normal mice (9.95 ± 0.14 vs 7.86 ± 1.64 µmol/g wet weight, P<=0.05) but decreased in blood (0.64 ± 0.10 vs 0.85 ± 0.09 mg/ml) and testes (9.28 ± 0.15 vs 10.16 ± 0.28 µmol/g wet weight, P<=0.05). Dalton's lymphoma cells showed an increase in glutathione concentration (4.43 ± 0.26 µmol/g wet weight) as compared to splenocytes, their normal counterpart (3.62 ± 0.41 µmol/g wet weight). With the progression of tumor in mice, glutathione levels decreased significantly in testes (~10%) and bone marrow cells (~13%) while they increased in Dalton's lymphoma cells (28-46%) and spleen (15-27%). Glutathione levels in kidney, Dalton's lymphoma cells and bone marrow cells (8.50 ± 1.22, 4.43 ± 0.26 and 3.28 ± 0.17 µmol/g wet weight, respectively) decreased significantly (6.04 ± 0.42, 3.51 ± 0.32 and 2.17 ± 0.14 µmol/g wet weight, P<=0.05) after in vivo cisplatin treatment for 24 h. Along with a decrease in glutathione level, the glutathione-S-transferase (GST) activity also decreased by 60% in tumor cells after cisplatin treatment. The elevated drug uptake by the tumor cells under the conditions of reduced glutathione concentration and GST activity after treatment could be an important contributory factor to cisplatin's anticancer activity leading to tumor regression. Furthermore, lower doses of cisplatin in combination with buthionine sulfoximine (an inhibitor of glutathione synthesis) may be useful in cancer chemotherapy with decreased toxicity in the host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunoglobulin E (IgE) and mast cells are believed to play important roles in allergic inflammation. However, their contributions to the pathogenesis of human asthma have not been clearly established. Significant progress has been made recently in our understanding of airway inflammation and airway hyperresponsiveness through studies of murine models of asthma and genetically engineered mice. Some of the studies have provided significant insights into the role of IgE and mast cells in the allergic airway response. In these models mice are immunized systemically with soluble protein antigens and then receive an antigen challenge through the airways. Bronchoalveolar lavage fluid from mice with allergic airway inflammation contains significant amounts of IgE. The IgE can capture the antigen presented to the airways and the immune complexes so formed can augment allergic airway response in a high-affinity IgE receptor (FcepsilonRI)-dependent manner. Previously, there were conflicting reports regarding the role of mast cells in murine models of asthma, based on studies of mast cell-deficient mice. More recent studies have suggested that the extent to which mast cells contribute to murine models of asthma depends on the experimental conditions employed to generate the airway response. This conclusion was further supported by studies using FcepsilonRI-deficient mice. Therefore, IgE-dependent activation of mast cells plays an important role in the development of allergic airway inflammation and airway hyperresponsiveness in mice under specific conditions. The murine models used should be of value for testing inhibitors of IgE or mast cells for the development of therapeutic agents for human asthma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlorhexidine, even at low concentrations, is toxic for a variety of eukaryotic cells; however, its effects on host immune cells are not well known. We evaluated in vitro chlorhexidine-induced cytotoxicity and its effects on reactive oxygen/nitrogen intermediate induction by murine peritoneal macrophages. Thioglycollate-induced cells were obtained from Swiss mice by peritoneal lavage with 5 ml of 10 mM phosphate-buffered saline, washed twice and resuspended (10(6) cells/ml) in appropriate medium for each test. Cell preparations contained more than 95% macrophages. The cytotoxicity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay and the presence of hydrogen peroxide (H2O2) and nitric oxide (NO) by the horseradish peroxidase-dependent oxidation of phenol red and Griess reaction, respectively. The midpoint cytotoxicity values for 1- and 24-h exposures were 61.12 ± 2.46 and 21.22 ± 2.44 µg/ml, respectively. Chlorhexidine did not induce synthesis or liberation of reactive oxygen/nitrogen intermediates. When macrophages were treated with various sub-toxic doses for 1 h (1, 5, 10, and 20 µg/ml) and 24 h (0.5, 1, and 5 µg/ml) and stimulated with 200 nM phorbol myristate acetate (PMA) solution, the H2O2 production was not altered; however, the NO production induced by 10 µg/ml lipopolysaccharide (LPS) solution varied from 14.47 ± 1.46 to 22.35 ± 1.94 µmol/l and 13.50 ± 1.42 to 20.44 ± 1.40 µmol/l (N = 5). The results showed that chlorhexidine has no immunostimulating activity and sub-toxic concentrations did not affect the response of macrophages to the soluble stimulus PMA but can interfere with the receptor-dependent stimulus LPS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the effect of oral and portal vein administration of alloantigens on mouse skin allograft survival. Graft receptor BALB/c mice received spleen cells (30, 90, 150 or 375 x 10(6)) from donor C57BL/6 mice intragastrically on three successive days, starting seven days before the skin graft. Allograft survival was significantly increased with the feeding of 150 x 10(6) allogeneic spleen cells by one gavage (median survival of 12 vs 14 days, P <= 0.005) or when 300 x 10(6) cells were given in six gavage (12 vs 14 days, P < 0.04). A similar effect was observed when 150 x 10(6) spleen cells were injected into the portal vein (12 vs 14 days, P <= 0.03). Furthermore, prolonged allograft survival was observed with subcutaneous (12 vs 16 days, P <= 0.002) or systemic (12 vs 15 days, P <= 0.016) application of murine interleukin-4 (IL-4), alone or in combination with spleen cell injection into the portal vein (12 vs 18 days, P <= 0.0018). Taken together, these results showed that tolerance induction with spleen cells expressing fully incompatible antigens by oral administration or intraportal injection partially down-modulates skin allograft rejection. Furthermore, these findings demonstrated for the first time the effect of subcutaneous or systemic IL-4 application on allograft skin survival suggesting its use as a beneficial support therapy in combination with a tolerance induction protocol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thalidomide is a selective inhibitor of tumor necrosis factor-alpha (TNF-alpha), a cytokine involved in mycobacterial death mechanisms. We investigated the role of this drug in the functional activity of alveolar macrophages in the presence of infection induced by intranasal inoculation of Mycobacterium avium in thalidomide-treated and untreated adult Swiss mice. Sixty animals were inoculated with 5 x 10(6) M. avium by the respiratory route. Thirty animals received daily thalidomide (30 mg/kg mouse) and 30 received water by gavage up to sacrifice. Ten non-inoculated mice were used as a control group. Lots of animals from each group were evaluated until 6 weeks after inoculation. Infection resulted in an increased total number of inflammatory cells as well as increased activity of pulmonary macrophages. Histologically, intranasal inoculation of bacilli resulted in small mononuclear infiltrates located at the periphery of the organ. Culture of lung fragments revealed the presence of bacilli only at the beginning and at the end of the experimental period. Thalidomide administration did not affect the microbiological or histological features of the infection. Thalidomide-treated and untreated animals showed the same amount of M. avium colonies 3 weeks after infection. Although it did not affect bacillary clearance, thalidomide administration resulted in a decreased percent of spread cells and release of hydrogen peroxide, suggesting that factors other than TNF-alpha play a role in the killing of mycobacteria by alveolar macrophages. Thalidomide administration also reduced the number of spread cells among resident macrophages, suggesting a direct effect of the drug on this phenomenon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macrophages are critical for natural immunity and play a central role in specific acquired immunity. The IFN-gamma activation of macrophages derived from A/J or BALB/c mice yielded two different patterns of antiviral state in murine hepatitis virus 3 infection, which were related to a down-regulation of the main virus receptor. Using cDNA hybridization to evaluate mRNA accumulation in the cells, we were able to identify several genes that are differently up- or down-regulated by IFN-gamma in A/J (267 and 266 genes, respectively, up- and down-regulated) or BALB/c (297 and 58 genes, respectively, up- and down-regulated) mouse macrophages. Macrophages from mice with different genetic backgrounds behave differently at the molecular level and comparison of the patterns of non-activated and IFN-gamma-activated A/J or BALB/c mouse macrophages revealed, for instance, an up-regulation and a down-regulation of genes coding for biological functions such as enzymatic reactions, nucleic acid synthesis and transport, protein synthesis, transport and metabolism, cytoskeleton arrangement and extracellular matrix, phagocytosis, resistance and susceptibility to infection and tumors, inflammation, and cell differentiation or activation. The present data are reported in order to facilitate future correlation of proteomic/transcriptomic findings as well as of results obtained from a classical approach for the understanding of biological phenomena. The possible implication of the role of some of the gene products relevant to macrophage biology can now be further scrutinized. In this respect, a down-regulation of the main murine hepatitis virus 3 receptor gene was detected only in IFN-gamma-activated macrophages of resistant mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a previous study we monitored the distribution and phenotype expression of B1 cells during the evolution of experimental murine schistosomiasis mansoni and we proposed that the B1 cells were heterogeneous: a fraction which originated in the spleen and followed the migratory pathway to mesenteric ganglia, while the other was the resident peritoneal B1-cell pool. In the present study, we have addressed the question of whether these two B1-lymphocyte populations are involved in the production of the late Ig isotype IgE, which is present in high levels in schistosomal infection. Lymphocyte expression of surface markers and immunoglobulins were monitored by immunofluorescence flow cytometry. Both in the spleen and mesenteric ganglia, the B1 and B2 cells were induced to switch from IgM to IgE in the early Th2-dominated phase of the disease, with an increase of IgE in its later phases. Conversely, peritoneal B1-IgM+ switched to the remaining IgE+ present in high numbers in the peritoneal cavity throughout the disease. We correlated the efficient induction of the expression of late Ig isotypes by B1 cells with high levels of inflammatory cytokines due to the intense host response to the presence of worms and their eggs in the abdominal cavity. In conclusion, B1 cells have a different switch behavior from IgM to IgE indicating that these cell sub-populations depend on the microenvironment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to compare the efficacy of a novel phosphodiesterase 4 and 5 inhibitor, LASSBio596, with that of dexamethasone in a murine model of chronic asthma. Lung mechanics (airway resistance, viscoelastic pressure, and static elastance), histology, and airway and lung parenchyma remodeling (quantitative analysis of collagen and elastic fiber) were analyzed. Thirty-three BALB/c mice were randomly assigned to four groups. In the asthma group (N = 9), mice were immunized with 10 µg ovalbumin (OVA, ip) on 7 alternate days, and after day 40 they were challenged with three intratracheal instillations of 20 µg OVA at 3-day intervals. Control mice (N = 8) received saline under the same protocol. In the dexamethasone (N = 8) and LASSBio596 (N = 8) groups, the animals of the asthma group were treated with 1 mg/kg dexamethasone disodium phosphate (0.1 mL, ip) or 10 mg/kg LASSBio596 dissolved in dimethyl sulfoxide (0.2 mL, ip) 24 h before the first intratracheal instillation of OVA, for 8 days. Airway resistance, viscoelastic pressure and static elastance increased significantly in the asthma group (77, 56, and 76%, respectively) compared to the control group. The asthma group presented more intense alveolar collapse, bronchoconstriction, and eosinophil and neutrophil infiltration than the control group. Both LASSBio596 and dexamethasone inhibited the changes in lung mechanics, tissue cellularity, bronchoconstriction, as well as airway and lung parenchyma remodeling. In conclusion, LASSBio596 at a dose of 10 mg/kg effectively prevented lung mechanical and morphometrical changes and had the potential to block fibroproliferation in a BALB/c mouse model of asthma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of schistosomiasis on microsomal enzymes were studied on post-infection day 90 when accumulated damage and fibrosis are most intense but granulomatous reaction around the eggs harbored in the liver is smaller than during the earlier phases. Swiss Webster (SW) and DBA/2 mice of either sex (N = 12 per sex per group) were infected with 100 Schistosoma mansoni cercariae on postnatal day 10 and killed on post-infection day 90. Cytochrome P-450 (CYP) concentration and alkoxyresorufin-O-dealkylases (EROD, MROD, BROD, and PROD), p-nitrophenol-hydroxylase (PNPH), coumarin-7-hydroxylase (COH), and UDP-glucuronosyltransferase (UGT) activities were measured in hepatic microsomes. Age-matched mice of the same sex and strain were used as controls. In S. mansoni-infected mice, CYP1A- and 2B-mediated activities (control = 100%) were reduced in SW (EROD: male (M) 36%, female (F) 38%; MROD: M 38%, F 39%; BROD: M 46%, F 19%; PROD: M 50%, F 28%) and DBA/2 mice (EROD: M 64%, F 58%; MROD: M 60%; BROD: F 49%; PROD: M 73%) while PNPH (CYP2E1) was decreased in SW (M 31%, F 38%) but not in DBA/2 mice. COH did not differ between infected and control DBA/2 and UGT, a phase-2 enzyme, was not altered by infection. In conclusion, chronic S. mansoni infection reduced total CYP content and all CYP-mediated activities evaluated in SW mice, including those catalyzed by CYP2E1 (PNPH), CYP1A (EROD, MROD) and 2B (BROD, PROD). In DBA/2 mice, however, CYP2A5- and 2E1-mediated activities remained unchanged while total CYP content and activities mediated by other CYP isoforms were depressed during chronic schistosomiasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review provides examples of the fact that different procedures for the measurement of atherosclerosis in mice may lead to interpretation of the extent of atherosclerosis having markedly different biological and clinical significance for humans: 1) aortic cholesterol measurement is highly sensitive for the detection of early and advanced atherosclerosis lesions, but misses the identification of the location and complexity of these lesions that are so critical for humans; 2) the histological analysis of the aortic root lesions in simvastatin-treated and control mice reveals similar lesion morphology in spite of the remarkable simvastatin-induced reduction of the aortic cholesteryl ester content; 3) in histological analyses, chemical fixation and inclusion may extract the tissue fat and also shrink and distort tissue structures. Thus, the method may be less sensitive for the detection of slight differences among the experimental groups, unless a more suitable procedure employing physical fixation with histological sample freezing using optimal cutting temperature and liquid nitrogen is employed. Thus, when measuring experimental atherosclerosis in mice, investigators should be aware of several previously unreported pitfalls regarding the extent, location and complexity of the arterial lesion that may not be suitable for extrapolation to human pathology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sepsis involves a systemic inflammatory response of multiple endogenous mediators, resulting in many of the injurious and sometimes fatal physiological symptoms of the disease. This systemic activation leads to a compromised vascular response and endothelial dysfunction. Purine nucleotides interact with purinoceptors and initiate a variety of physiological processes that play an important role in maintaining cardiovascular function. The purpose of the present study was to investigate the effects of ATP on vascular function in a lipopolysaccharide (LPS) model of sepsis. LPS induced a significant increase in aortic superoxide production 16 h after injection. Addition of ATP to the organ bath incubation solution reduced superoxide production by the aortas of endotoxemic animals. Reactive Blue, an antagonist of the P2Y receptor, blocked the effect of ATP on superoxide production, and the nonselective P2Y agonist MeSATP inhibited superoxide production. Nitric oxide synthase (NOS) inhibition by L-NAME blocked vascular relaxation and reduced superoxide production in LPS-treated animals. In the presence of L-NAME there was no ATP effect on superoxide production. A vascular reactivity study showed that ATP increased maximal relaxation in LPS-treated animals compared to controls. The presence of ATP induced increases in Akt and endothelial NOS phosphorylated proteins in the aorta of septic animals. ATP reduces superoxide release resulting in an improved vasorelaxant response. Sepsis may uncouple NOS to produce superoxide. We showed that ATP through Akt pathway phosphorylated endothelial NOS and “re-couples” NOS function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After myocardial infarction (MI), activation of the immune system and inflammatory mechanisms, among others, can lead to ventricular remodeling and heart failure (HF). The interaction between these systemic alterations and corresponding changes in the heart has not been extensively examined in the setting of chronic ischemia. The main purpose of this study was to investigate alterations in cardiac gene and systemic cytokine profile in mice with post-ischemic HF. Plasma was tested for IgM and IgG anti-heart reactive repertoire and inflammatory cytokines. Heart samples were assayed for gene expression by analyzing hybridization to AECOM 32k mouse microarrays. Ischemic HF significantly increased the levels of total serum IgM (by 5.2-fold) and total IgG (by 3.6-fold) associated with a relatively high content of anti-heart specificity. A comparable increase was observed in the levels of circulating pro-inflammatory cytokines such as IL-1β (3.8X) and TNF-α (6.0X). IFN-γ was also increased by 3.1-fold in the MI group. However, IL-4 and IL-10 were not significantly different between the MI and sham-operated groups. Chemokines such as MCP-1 and IL-8 were 1.4- and 13-fold increased, respectively, in the plasma of infarcted mice. We identified 2079 well annotated unigenes that were significantly regulated by post-ischemic HF. Complement activation and immune response were among the most up-regulated processes. Interestingly, 21 of the 101 quantified unigenes involved in the inflammatory response were significantly up-regulated and none were down-regulated. These data indicate that post-ischemic heart remodeling is accompanied by immune-mediated mechanisms that act both systemically and locally.