125 resultados para MICROVOLTAMMETRIC ELECTRODES
Resumo:
New chemical systems have been recently designed for the study of complex phenomena such as oscillatory dynamics in the temporal domain and spatiotemporal pattern formation. Systems derived from oscillators based on the chemistry of bromate are the most extensively studied, with the celebrated Belousov-Zhabotinsky (BZ) reaction being the most popular example. Problems such as the formation of bubbles (CO2) and solid precipitate in the course of the reaction and the occurrence of simply short-lived oscillations under batch conditions are very common and, in some cases, compromise the use of some of these systems. It is investigated in this paper the dynamic behavior of the bromate/hypophosphite/acetone/dual catalyst system, which has been sugested as an interesting alternative to circumvent those inconvenients. In this work, manganese and ferroin are employed as catalysts and the complete system (BrO3-/H2PO2-/acetone/Mn(II)-ferroin) is studied under batch conditions. Temporal symmetry breaking was studied in a reactor under agitation by means of simultaneous records of the potential changes of platinum and Ag/AgBr electrodes, both measured versus a reversible hydrogen electrode. Additionally, spatio-temporal formation of target patterns and spiral waves were obtained when the oscillating mixture was placed in a quasi two-dimensional reactor.
Resumo:
The aim of this review is to present and discuss the applications of ultrasound in electrochemical systems such as in sonoelectroanalysis and sonoelectrolysis for the electrochemical combustion of organic compounds. Initially, theoretical and experimental aspects are discussed, particularly those related to the enhancement of mass transport and the surface cleaning effects. Some results are included to illustrate alternative geometries for the experimental measurements and the working electrodes used in these systems. In the sequence, the available publications are presented and discussed to demonstrate that ultrasound combined with electrochemical techniques is a powerful set-up for the detection of analytes such as metals and/or organic compounds in hostile media and for the effective destruction of toxic organic substances. At the end, a table summarizes the results already published in the literature.
Resumo:
The electrochemical oxidation of glyphosate on an electrode of nickel and on one of copper was studied. With both electrodes electrochemical signals related to the glyphosate concentration were observed. However, the behaviour of the copper electrode was much better than that of the nickel electrode. A calibration curve was obtained of the electrical signal of this electrode as a function of the glyphosate concentration. The detection limit was 30 µM. In the case of nickel, an increase in the oxidation signal, which is related to the glyphosate concentration, was obtained. However, the results were less reproducible and additional information is necessary to propose an interaction mechanism between glyphosate and the electrode.
Resumo:
Water treatment uses chlorine for disinfection causing formation of trihalomethanes. In this work, an electrolytic water pre-treatment was studied and applied to the water from a fountainhead. The action against microorganisms was evaluated using cast-iron and aluminum electrodes. Assays were made in laboratory using the electrolytic treatment. After 5 min of electrolysis the heterotrophic bacteria count was below 500 cfu/mL and complete elimination of total and fecal coliforms was observed. Using electrolytic treatment as a pretreatment of conventional tap water treatment is proposed.
Resumo:
The electrochemical behavior of N-nitrosothiazolidine carboxylic acid (NTAC) on gold and hanging mercury electrodes, using the cyclic and square wave voltammetries, was studied. Whereas NTAC suffer reduction in a single step on the mercury electrode, two peaks appears on the cyclic voltammograms on the gold electrode, one anodic peak overlaying the gold oxide process at 1.2 V and one cathodic peak at -0.41 V vs Ag/AgCl, KCl 3.0 mol L-1. The cathodic peak depends on the previous oxidation of NTAC at the electrode surface, presents irreversible and adsorption controlled characteristics and it is suitable for quantitative purposes.
Resumo:
In this work was developed a method for the determination of saccharin in dietary products by a biamperometric titration, using two silver electrodes as working electrodes and silver nitrate as titrant. It were used products as juices (light) and sweeteners with saccharin in concentrations ranged from 8.73 x 10-5 mol L-1 to 1.0 x 10-2 mol L-1, and the results were in close agreement with those data found using a HPLC method at a confidence level of 95%. The main advantages of the proposed method are its simplicity, rapid and low cost.
Resumo:
The degradation of disperses dyes in aqueous solution and in effluents from textile industry has been investigated by photoelectrocatalytic oxidation using nanoporous thin films electrodes of Ti/TiO2. Samples of dispersil black dye and dispersil blue dye after 300 min of photoelectrolyzed at applied potential of +1.0 V and UV irradiation exhibited 100% of discoloration and 90% and 64% reduction total organic carbon, respectively. The proposed method was applied with success in a textile industry effluent containing residues of these dyes, which after 300 min of treatment leads to reduction of 60% of COD and 64% removal of TOC.
Resumo:
The study of the electrochemical degradation of the ranitidine was developed using an electrochemical reactor with a gas diffusion electrode (GDE) as cathode. The electrolysis experiments was performed at constant current (1 < A < 10) and flow rate of 200 L h-1. The process of drug degradation, chemical/electrochemical and electro-Fenton ways, using electrochemical reactor showed best efficiency at current values of > 4 A. The process reached a production of 630 mg L-1 of the H2O2 at 7 A. The ranitidine concentrations was reduced in 99.9% (HPLC) and chemical oxygen demand (COD) was reduced in 86.7% by electro-Fenton.
Resumo:
Copper electrode can be used for determination of complexing compounds through complexation reactions between Cu(II) and the analites. In this work some studies with three compounds were performed: glycine (precursor of glyphosate synthesis), herbicide glyphosate and aminomethylphosphonic acid (main metabolite of glyphosate). These compounds are complexing agents for Cu electrodes. Through simple experiments (cyclic voltammetry and corrosion studies) the applicability of the copper electrode as electrochemical sensor for complexing compounds in flow systems was presented.
Resumo:
The participation of the students in the planning, execution and discussion of experimental results is important for the valuation of the role of them in the construction of the chemical knowledge implicited in the approach between education and research. This work relates either the construction of selective membrane electrodes for surfactants and its application in the potenciometric determination of the critical micellar concentration of the sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium bromide (DTAB) surfactants. In adition it´s possible to discuss the potenciometric results in matching with the data valued for the tensiometric and condutimetric traditionally used in the physical-chemistry lessons.
Resumo:
This works proposes a homemade construction of a lead(II) ISE of solid membrane (Ag2S/PbS) to determine Pb2+ ions in potentiometric titrations, using damaged combined glass electrodes. This electrode can be constructed in teaching laboratories, using it as a learning tool related to the theoretical principle of ISE. The analytical curve obtained (y = 27.056x + 337.58; R = 0.996) was linear on the range of 1 x 10-5 to 1 mol L-1 and has presented a very close behavior of the Nernstian. The homemade ISE has presented a similar selectivity to the commercial electrodes, showing to be a good alternative to the experimental activities on teaching laboratories.
Resumo:
Novel modified electrodes bearing dispersed Pd and Pt particles have been prepared from poly (allyl ether of the p-benzenesulfonic acid) films with incorporated nickel particles making use of galvanic displacement reactions. The SEM analysis of the new modified electrodes revealed efficient deposition of Pd but weak up-take of Pt. Electrocatalytic hydrogenation of several classes of organic substrates were carried out using the MEs Ni, Ni/Pd and Ni/Pt. The Ni/Pd ME showed to be the best of them for the hydrogenation of double, triple and carbonyl bonds. The complete hydrogenation of the aromatic rings for the well-adsorbed substrates acetophenone and benzophenone is noteworthy.
Resumo:
Analysis at microenvironments, like single cells or in minute volumes (nL), is an area of great interest for analytical and biological sciences. Measurements at these experimental conditions demand analytical tools (microelectrodes) capable of monitoring with rapid response, good resolution and minimal perturbation of the system. The major drawbacks in producing these microscopic electrodes have been largely overcome, principally due to the development of new fabrication methods. In this review, these procedures are described with emphasis to those devoted to the construction of microelectrodes for application in microenvironments. Examples of our efforts to use these devices as effective electrochemical sensors are also addressed.
Resumo:
The present work describes a low-cost electrochemical "wall-jet" detector for flow analysis. The electrolytic solution enters into the cell through a tube of stainless steel (200 to 300 µm i.d), reaching to the center of the working electrode perpendicularly and then being mixed to the remaining solution in the cell, which flows under atmospheric pressure into a waste reservoir. The proposed electrochemical detector can be used with any type of working electrode, from commercial to home-made, such as glassy carbon and metallic electrodes (modified or unmodified), which enlarge the applications of the electrochemical detector.
Resumo:
Different parameters of carbon ceramic electrodes (CCE) preparation, such as type of precursor, carbon material, catalyst amount, among others, significantly influence the morphological properties and consequently their electrochemical responses. This paper describes a 2³ factorial design (2 factors and 3 levels with central point replicates), which the factors analyzed were catalyst amount (HCl 12 mol L-1), graphite/precursor ratio, and precursor type (TEOS - tetraethoxysilane and MTMOS - methyltrimetoxysilane). The design resulted in a significant third order interaction for peak current values (Ipa) and a second order interaction for potential difference (ΔE), between thefactors studied, which could not be observed when using an univariated study.