296 resultados para Josefo, Flávio, 37 ou 8-ca.100
Resumo:
Broccoli is a vegetable consumed in many countries and a possible source of folates, which are water-soluble vitamins active during DNA synthesis. The folates found in the samples analyzed were 5-methyltetrahydrofolate and 5-formyltetrahydrofolate. The vitamin content varied between 413.7 and 742.2 µg/100 g for 5-methyltetrahydrofolate and from 4.8 to 12.8 µg/100 g for 5-formyltetrahydrofolate. In organic broccoli the amount of 5-methyltetrahydrofolate was significantly higher than in the same vegetable cultivated by traditional methods, for the commercial samples analyzed. The losses of these folates after cooking in water were of approximately 68%, most of it (53%) found in the cooking water.
Resumo:
Photosynthetic microorganism cultures, such as microalgae, represent one of the alternatives for fossil CO2 emissions mitigation. Carbon supply is the major cost component in microalgal cultures. Aiming to enhance the dissolved inorganic carbon uptake efficiency in microalgal cultures, Spirulina sp LEB-18 was cultivated in mediums containing NaHCO3 concentrations ranging from 2.8 to 100 g L-1. Results indicated that lower dissolved inorganic carbon concentratios (2.8 g L-1 NaHCO3) produce higher growth parameters (Xmax = 0.75 g L-1; Pmax = 0.145 g L-1 d-1; µmax = 0.254 d-1) and lower carbon losses (13.61%). At 50 g L-1 of NaHCO3 cell growth was inhibited and carbon losses reached 38.73%.
Resumo:
Reservoir geochemistry has been effectively used to evaluate compositional heterogeneity in petroleum reservoirs by employing oil fingerprinting technique to assess reservoir continuity, primarily in paraffin oil accumulations. In-reservoir biodegradation has resulted in vast deposits of heavy oils globally; therefore, the application of reservoir geochemistry to such accumulations becomes necessary. We recommend the use of pentacyclic terpanes instead of lower molecular compounds, which are less resistant to biodegradation. Using oil fingerprinting technique in this novel way enabled the differentiation of oil composition among sedimentary facies of tar sands (Pirambóia Formation, Paraná Basin).
Resumo:
Three bacterial strains were isolated from the activated sludge system of petroleum refinery wastewater, identified by partial sequencing of 16S rDNA, and classified as Acinetobacter genomospecies 3, Bacillus pumilus, and Bacillus flexus. The degradation efficiency of aromatic hydrocarbons was evaluated by gas chromatography with a flame ionization detector. In a mineral medium containing anthracene and phenanthrene and the consortium of microorganisms, the removal efficiency was 96% and 99%, respectively, after 30 days. The good rate of hydrocarbon degradation proves the operational efficiency of the microbial consortium in treating effluents containing these compounds.
Resumo:
Composites strengthened with nanocellulose have been developed with the aim of improving mechanical, barrier, and thermal properties of materials. This improvement is primarily due to the nanometric size and the high crystallinity of the incorporated cellulose. Cassava starch films plasticized with glycerol and incorporated with nanocellulose from coconut fibers were developed in this study. The effect of this incorporation was studied with respect to the water activity, solubility, mechanical properties, thermal analysis, and biodegradability. The study demonstrated that the film properties can be significantly altered through the incorporation of small concentrations of nanocellulose.
Resumo:
Nutrient levels in water reservoirs have been increasing over the years worldwide and fish farming is one of the activities with the potential to cause negative impacts on these environments. Thus, the sedimentation of the main nutrients was evaluated in a reservoir as well as the contribution of aquaculture in raising these rates. The results indicated a significant difference for all nutrients, with higher concentrations in areas near the fish farming, and lower levels in more distant regions. Therefore, assessments that focus only on the water column do not reflect the true impact of this activity.
Resumo:
The synthesis and characterization of different platinum nanoparticle/carbon nanotube nanocomposite samples are described along with the application of these nanocomposites as electrocatalysts for alcohol oxidation. Samples were prepared by a biphasic system in which platinum nanoparticles (Pt-NPs) are synthesized in situ in contact with a carbon nanotube (CNT) dispersion. Variables including platinum precursor/CNT ratio, previous chemical treatment of carbon nanotubes, and presence or absence of a capping agent were evaluated and correlated with the characteristic of the synthesized materials. Samples were characterized by Raman spectroscopy, X-ray diffraction, thermogravimetric analysis and transmission electron microscopy. Glassy carbon electrodes were modified by the nanocomposite samples and evaluated as electrocatalysts for alcohol oxidation. Current densities of 56.1 and 79.8/104.7 mA cm-2 were determined for the oxidation of methanol and ethanol, respectively.
Resumo:
A facile one-step synthesis of 1H-benzoxazine-2,4-diones from heterocyclic anhydrides and TMSA was described. This paper determines their antimicrobial activity against nine human bacterial pathogens by the broth microdilution method; antioxidant activity by DPPH• inactivation and a ferric-reducing power assay; and toxicity by a brine shrimp, Artemia salina, assay. The 1H-benzoxazine-2,4-dione yields were in the range of 57 to 98%. The novel compound 1H-pyrazino[2,3-][1,3]oxazine-2,4-dione 4c showed the highest antioxidant capacity (DPPH 35.4% and FRAP 0.063 µmol TEs/µmol).
Resumo:
In this work, a novel device based on polyacrylamide (PAAm) hydrogels and KL - DeOH - H2O lyotropic liquid crystal (LLC), with potential for application as Polymer Dispersed Liquid Crystals (PDLC), was proposed and its properties characterized. The confinement of LLC promoted significant changes in spectroscopic, morphological, optical, hydrophilic, structural and mechanical properties due to the interaction between the LLC-PAAm matrix and entropic parameter changes. The mechanical and structural properties can be controlled by adjusting AAm, temperature and presence of LLC, which can be useful for technological applications of these systems in optical devices.
Resumo:
In this study, a procedure is developed for cloud point extraction of Pd(II) and Rh(III) ions in aqueous solution using Span 80 (non-ionic surfactant) prior to their determination by flame atomic absorption spectroscopy. This method is based on the extraction of Pd(II) and Rh(III) ions at a pH of 10 using Span 80 with no chelating agent. We investigated the effect of various parameters on the recovery of the analyte ions, including pH, equilibration temperature and time, concentration of Span 80, and ionic strength. Under the best experimental conditions, the limits of detection based on 3Sb for Pd(II) and Rh(III) ions were 1.3 and 1.2 ng mL-1, respectively. Seven replicate determinations of a mixture of 0.5 µg mL-1 palladium and rhodium ions gave a mean absorbance of 0.058 and 0.053 with relative standard deviations of 1.8 and 1.6%, respectively. The developed method was successfully applied to the extraction and determination of the palladium and rhodium ions in road dust and standard samples and satisfactory results were obtained.
Resumo:
The Direct Black 22 dye was electrooxidized at 30 mA cm-2 in a flow cell using a BDD or β-PbO2 anode, varying pH (3, 7, 11), temperature (10, 25, 45 °C), and [NaCl] (0 or 1.5 g L-1). In the presence of NaCl, decolorization rates were similar for all conditions investigated, but much higher than predicted through a theoretical model assuming mass-transport control; similar behavior was observed for COD removal (at pH 7, 25 °C), independently of the anode. With no NaCl, COD removals were also higher than predicted with a theoretical model, which suggests the existence of distinct dye degradation pathways.
Resumo:
A potentiometric Nickel sensor was prepared using 2-hydroxy-1-naphthylidene-N-cyanoacetohydrazone as electro-active material and epoxy resin as a binding material. A membrane composed of 40% Schiff's base and 60% epoxy resin exhibited the best performance. The membrane showed excellent response in the concentration range of 0.15 ppm to 0.1 mol L- 1 Ni+2 ions with non-Nernstian slope of 22.0 mV/decade, had a rapid response time (less than 10 s), and can be used for three months without any considerable loss of potential. The sensor was useful within the pH range of 1.3 to 9.6, and was able to discriminate between Ni2+ and a large number of alkaline earth and transition metal ions. The practical utility of the sensor has been demonstrated by using it successfully as an indicator electrode in the potentiometric titration of Ni2+ with EDTA and oxalic acid.
Resumo:
The carcinogenic potential of carbendazim and its metabolites was analyzed using statistical treatment of electronic parameters obtained from DFT/ 6-311++G(d,p) and AM1 calculations. The carcinogen-DNA interaction is described in the framework of the theory of unsynchronized resonance of covalent bond as a process of electron transfer involving the HOMO and LUMO frontier orbitals. Through a Principal Component Analysis (PCA) of the electron affinity, carcinogen-DNA interaction energy, electrostatic attraction and cell membrane permeability (dipole moment m and partition coefficient LogP) evidence was obtained showing carbendazim displays carcinogenic activity. For the metabolites of carbendazim, no evidence was found in the literature of their carcinogenic activities. However, the electronic parameters for these metabolites exhibited similarity to known carcinogens, thereby showing the importance of the results obtained in this study for a policy based on the precautionary principle.
Resumo:
A procedure was developed for determination of 5 sedatives and 14 β-blockers in swine kidney and subsequent analysis by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Three different procedures for extraction were tested, evaluated through recovery studies. The procedure using acetonitrile for extraction and cleanup with freezing at low temperature and dispersive solid phase extraction using 500 mg celite® 545 before the concentration step presented the better results. The dried samples were redissolved with methanol and analyzed using a LC-MS/MS system with electrospray ionization (ESI) operating in positive MRM mode. The recovery values for this procedure were in the 75-88% range. The robustness of the method was tested against small variations. The method was used to analyze carazolol, azaperone and azaperol in collaborative assay, obtaining results close to designed value.
Resumo:
Due to their recalcitrant nature, organochlorides are already found in environment and the search for alternatives to eliminate these compounds such as biodegradation using native microorganisms is of great interest. A screening trial to select environmental bacteria able to degrade DDD, PCP and dieldrin was conducted. Among 14 isolates, the soil bacteria Pseudomonas aeruginosa L2-1 showed the highest tolerance to increasing concentrations of the organochlorides and was selected for further studies. Biodegradation was assessed in liquid medium, varying the concentrations of glucose and the presence of rhamnolipids (RL). The best medium for the occurrence of biodegradation of the compounds contained 0.5% glucose, giving approximately 50% yield after three days of incubation. Results showed that the biodegradation rates of the organochlorides by P. aeruginosa L2-1 were greater at low concentrations of glucose and in the presence of rhamnolipids.