63 resultados para Jacobi Matrix


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chondrocytes and bone marrow mesenchymal stem cells (BMSCs) are frequently used as seed cells in cartilage tissue engineering. In the present study, we determined if the co-culture of rabbit articular chondrocytes and BMSCs in vitro promotes the expression of cartilaginous extracellular matrix and, if so, what is the optimal ratio of the two cell types. Cultures of rabbit articular chondrocytes and BMSCs were expanded in vitro and then cultured individually or at a chondrocyte:BMSC ratio of 4:1, 2:1, 1:1, 1:2, 1:4 for 21 days and cultured in DMEM/F12. BMSCs were cultured in chondrogenic induction medium. Quantitative real-time RT-PCR and Western blot were used to evaluate gene expression. In the co-cultures, type II collagen and aggrecan expression increased on days 14 and 21. At the mRNA level, the expression of type II collagen and aggrecan on day 21 was much higher in the 4:1, 2:1, and 1:1 groups than in either the articular chondrocyte group or the induced BMSC group, and the best ratio of co-culture groups seems to be 2:1. Also on day 21, the expression of type II collagen and aggrecan proteins in the 2:1 group was much higher than in all other groups. The results demonstrate that the co-culture of rabbit chondrocytes and rabbit BMSCs at defined ratios can promote the expression of cartilaginous extracellular matrix. The optimal cell ratio appears to be 2:1 (chondrocytes:BMSCs). This approach has potential applications in cartilage tissue engineering since it provides a protocol for maintaining and promoting seed-cell differentiation and function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the most common features of highly invasive tumors, such as lung adenocarcinomas (AD) and squamous cell carcinomas (SqCC), is the massive degradation of the extracellular matrix. The remarkable qualitative and quantitative modifications of hyaluronidases (HAases), hyaluronan synthases (HAS), E-cadherin adhesion molecules, and the transforming growth factor β (TGF-β) may favor invasion, cellular motility, and proliferation. We examined HAase proteins (Hyal), HAS, E-cadherin, and TGF-β profiles in lung AD subtypes and SqCC obtained from smokers and non-smokers. Fifty-six patients, median age 64 years, who underwent lobectomy for AD (N = 31) and SqCC (N = 25) were included in the study. HAS-1, -2 and -3, and Hyal-1 and -3 were significantly more expressed by tumor cells than normal and stroma cells (P < 0.01). When stratified according to histologic types, HAS-3 and Hyal-1 immunoreactivity was significantly increased in tumor cells of AD (P = 0.01) and stroma of SqCC (P = 0.002), respectively. Tobacco history in patients with AD was significantly associated with increased HAS-3 immunoreactivity in tumor cells (P < 0.01). Stroma cells of SqCC from non-smokers presented a significant association with HAS-3 (P < 0.01). Hyal, HAS, E-cadherin, and TGF-β modulate a different tumor-induced invasive pathway in lung AD subgroups and SqCC. HAases in resected AD and SqCC were strongly related to the prognosis. Therefore, our findings suggest that strategies aimed at preventing high HAS-3 and Hyal-1 synthesis, or local responses to low TGF-β and E-cadherin, may have a greater impact in lung cancer prognosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damage to cartilage causes a loss of type II collagen (Col-II) and glycosaminoglycans (GAG). To restore the original cartilage architecture, cell factors that stimulate Col-II and GAG production are needed. Insulin-like growth factor I (IGF-I) and transcription factor SOX9are essential for the synthesis of cartilage matrix, chondrocyte proliferation, and phenotype maintenance. We evaluated the combined effect of IGF-I and SOX9 transgene expression on Col-II and GAG production by cultured human articular chondrocytes. Transient transfection and cotransfection were performed using two mammalian expression plasmids (pCMV-SPORT6), one for each transgene. At day 9 post-transfection, the chondrocytes that were over-expressing IGF-I/SOX9 showed 2-fold increased mRNA expression of the Col-II gene, as well as a 57% increase in Col-II protein, whereas type I collagen expression (Col-I) was decreased by 59.3% compared with controls. The production of GAG by these cells increased significantly compared with the controls at day 9 (3.3- vs 1.8-times, an increase of almost 83%). Thus, IGF-I/SOX9 cotransfected chondrocytes may be useful for cell-based articular cartilage therapies.