87 resultados para Ischemic Attack, Transient
Resumo:
GM1 gangliosidosis is an autosomal recessive disorder caused by the deficiency of lysosomal acid hydrolase ß-galactosidase (ß-Gal). It is one of the most frequent lysosomal storage disorders in Brazil, with an estimated frequency of 1:17,000. The enzyme is secreted and can be captured by deficient cells and targeted to the lysosomes. There is no effective treatment for GM1 gangliosidosis. To determine the efficiency of an expression vector for correcting the genetic defect of GM1 gangliosidosis, we tested transfer of the ß-Gal gene (Glb1) to fibroblasts in culture using liposomes. ß-Gal cDNA was cloned into the expression vectors pSCTOP and pREP9. Transfection was performed using 4 µL lipofectamine 2000 and 1.5-2.0 µg DNA. Cells (2 x 10(5)/well) were harvested 24 h, 48 h, and 7 days after transfection. Enzyme specific activity was measured in cell lysate and supernatant by fluorometric assay. Twenty-four hours after transfection, treated cells showed a higher enzyme specific activity (pREP9-ß-Gal: 621.5 ± 323.0, pSCTOP-ß-Gal: 714.5 ± 349.5, pREP9-ß-Gal + pSCTOP-ß-Gal: 1859.0 ± 182.4, and pREP9-ß-Gal + pTRACER: 979.5 ± 254.9 nmol·h-1·mg-1 protein) compared to untreated cells (18.0 ± 3.1 for cell and 32.2 ± 22.2 nmol·h-1·mg-1 protein for supernatant). However, cells maintained in culture for 7 days showed values similar to those of untreated patients. In the present study, we were able to transfect primary patients' skin fibroblasts in culture using a non-viral vector which overexpresses the ß-Gal gene for 24 h. This is the first attempt to correct fibroblasts from patients with GM1 gangliosidosis by gene therapy using a non-viral vector.
Resumo:
We evaluated the recovery of cardiovascular function after transient cardiogenic shock. Cardiac tamponade was performed for 1 h and post-shock data were collected in 5 domestic large white female pigs (43 ± 5 kg) for 6 h. The control group (N = 5) was observed for 6 h after 1 h of resting. During 1 h of cardiac tamponade, experimental animals evolved a low perfusion status with a higher lactate level (8.0 ± 2.2 vs 1.9 ± 0.9 mEq/L), lower standard base excess (-7.3 ± 3.3 vs 2.0 ± 0.9 mEq/L), lower urinary output (0.9 ± 0.9 vs 3.0 ± 1.4 mL·kg-1·h-1), lower mixed venous saturation, higher ileum partial pressure of CO2-end tidal CO2 (EtCO2) gap and a lower cardiac index than the control group. Throughout the 6-h recovery phase after cardiac tamponade, tamponade animals developed significant tachycardia with preserved cardiac index, resulting in a lower left ventricular stroke work, suggesting possible myocardial dysfunction. Vascular dysfunction was present with persistent systemic hypotension as well as persistent pulmonary hypertension. In contrast, oliguria, hyperlactatemia and metabolic acidosis were corrected by the 6th hour. The inflammatory characteristics were an elevated core temperature and increased plasma levels of interleukin-6 in the tamponade group compared to the control group. We conclude that cardiovascular recovery after a transient and severe low flow systemic state was incomplete. Vascular dysfunction persisted up to 6 h after release of tamponade. These inflammatory characteristics may also indicate that inflammatory activation is a possible pathway involved in the pathogenesis of cardiogenic shock.
Resumo:
Chronic neurodegenerative processes have been identified in the rat forebrain after prolonged survival following hyperthermia (HT) initiated a few hours after transient global ischemia. Since transient global ischemia and ischemic penumbra share pathophysiological similarities, this study addressed the effects of HT induced after recirculation of focal brain ischemia on infarct size during long survival times. Adult male Wistar rats underwent intra-luminal occlusion of the left middle cerebral artery for 60 min followed by HT (39.0-39.5°C) or normothermia. Control procedures included none and sham surgery with and without HT, and middle cerebral artery occlusion alone. Part I: 6-h HT induced at recirculation. Part II: 2-h HT induced at 2-, 6-, or 24-h recirculation. Part III: 2-h HT initiated at recirculation or 6-h HT initiated at 2-, 6- or 24-h recirculation. Survival periods were 7 days, 2 or 6 months. The effects of post-ischemic HT on cortex and striatum were evaluated histopathologically by measuring the area of remaining tissue in the infarcted hemisphere at -0.30 mm from bregma. Six-hour HT initiated from 6-h recirculation caused a significant decrease in the remaining cortical tissue between 7-day (N = 8) and 2-month (N = 8) survivals (98.46 ± 1.14 to 73.62 ± 8.99%, respectively). When induced from 24-h recirculation, 6-h HT caused a significant reduction of the remaining cortical tissue between 2- (N = 8) and 6-month (N = 9) survivals (94.97 ± 5.02 vs 63.26 ± 11.97%, respectively). These data indicate that post-ischemic HT triggers chronic neurodegenerative processes in ischemic penumbra, suggesting that similar fever-triggered effects may annul the benefit of early recirculation in stroke patients over the long-term.
Resumo:
Ischemic preconditioning (IPC), a strategy used to attenuate ischemia-reperfusion injury, consists of brief ischemic periods, each followed by reperfusion, prior to a sustained ischemic insult. The purpose of the present study was to evaluate the local and systemic anti-inflammatory effects of hind limb IPC in male Wistar rat (200-250 g) models of acute inflammation. IPC was induced with right hind limb ischemia for 10 min by placing an elastic rubber band tourniquet on the proximal part of the limb followed by 30 min of reperfusion. Groups (N = 6-8) were submitted to right or left paw edema (PE) with carrageenan (100 µg) or Dextran (200 µg), hemorrhagic cystitis with ifosfamide (200 mg/kg, ip) or gastric injury (GI) with indomethacin (20 mg/kg, vo). Controls received similar treatments, without IPC (Sham-IPC). PE is reported as variation of paw volume (mL), vesical edema (VE) as vesical wet weight (mg), vascular permeability (VP) with Evans blue extravasation (µg), GI with the gastric lesion index (GLI; total length of all erosions, mm), and neutrophil migration (NM) from myeloperoxidase activity. The statistical significance (P < 0.05) was determined by ANOVA, followed by the Tukey test. Carrageenan or Dextran-induced PE and VP in either paw were reduced by IPC (42-58.7%). IPC inhibited VE (38.8%) and VP (54%) in ifosfamide-induced hemorrhagic cystitis. GI and NM induced by indomethacin were inhibited by IPC (GLI: 90.3%; NM: 64%). This study shows for the first time that IPC produces local and systemic anti-inflammatory effects in models of acute inflammation other than ischemia-reperfusion injury.
Resumo:
Computed tomography (CT) images are routinely used to assess ischemic brain stroke in the acute phase. They can provide important clues about whether to treat the patient by thrombolysis with tissue plasminogen activator. However, in the acute phase, the lesions may be difficult to detect in the images using standard visual analysis. The objective of the present study was to determine if texture analysis techniques applied to CT images of stroke patients could differentiate between normal tissue and affected areas that usually go unperceived under visual analysis. We performed a pilot study in which texture analysis, based on the gray level co-occurrence matrix, was applied to the CT brain images of 5 patients and of 5 control subjects and the results were compared by discriminant analysis. Thirteen regions of interest, regarding areas that may be potentially affected by ischemic stroke, were selected for calculation of texture parameters. All regions of interest for all subjects were classified as lesional or non-lesional tissue by an expert neuroradiologist. Visual assessment of the discriminant analysis graphs showed differences in the values of texture parameters between patients and controls, and also between texture parameters for lesional and non-lesional tissue of the patients. This suggests that texture analysis can indeed be a useful tool to help neurologists in the early assessment of ischemic stroke and quantification of the extent of the affected areas.
Resumo:
Myocardial ischemic preconditioning up-regulated protein 1 (Mipu1), a novel zinc finger protein, was originally cloned using bioinformatic analysis and 5' RACE technology of rat heart after a transient myocardial ischemia/reperfusion procedure in our laboratory. In order to investigate the functions of Mipu1, the recombinant prokaryotic expression vector pQE31-Mipu1 was constructed and transformed into Escherichia coli M15(pREP4), and Mipu1-6His fusion protein was expressed and purified. The identity of the purified protein was confirmed by mass spectrometry. The molecular mass of the Mipu1 protein was 70.03779 kDa. The fusion protein was intracutaneously injected to immunize New Zealand rabbits to produce a polyclonal antibody. The antibody titer was approximately 1:16,000. The antibody was tested by Western blotting for specificity and sensitivity. Using the antibody, it was found that Mipu1 was highly expressed in the heart and brain of rats and was localized in the nucleus of H9c2 myogenic cells. The present study lays the foundation for further study of the biological functions of Mipu1.
Resumo:
After myocardial infarction (MI), activation of the immune system and inflammatory mechanisms, among others, can lead to ventricular remodeling and heart failure (HF). The interaction between these systemic alterations and corresponding changes in the heart has not been extensively examined in the setting of chronic ischemia. The main purpose of this study was to investigate alterations in cardiac gene and systemic cytokine profile in mice with post-ischemic HF. Plasma was tested for IgM and IgG anti-heart reactive repertoire and inflammatory cytokines. Heart samples were assayed for gene expression by analyzing hybridization to AECOM 32k mouse microarrays. Ischemic HF significantly increased the levels of total serum IgM (by 5.2-fold) and total IgG (by 3.6-fold) associated with a relatively high content of anti-heart specificity. A comparable increase was observed in the levels of circulating pro-inflammatory cytokines such as IL-1β (3.8X) and TNF-α (6.0X). IFN-γ was also increased by 3.1-fold in the MI group. However, IL-4 and IL-10 were not significantly different between the MI and sham-operated groups. Chemokines such as MCP-1 and IL-8 were 1.4- and 13-fold increased, respectively, in the plasma of infarcted mice. We identified 2079 well annotated unigenes that were significantly regulated by post-ischemic HF. Complement activation and immune response were among the most up-regulated processes. Interestingly, 21 of the 101 quantified unigenes involved in the inflammatory response were significantly up-regulated and none were down-regulated. These data indicate that post-ischemic heart remodeling is accompanied by immune-mediated mechanisms that act both systemically and locally.
Resumo:
The aim of this study was to determine if bone marrow mononuclear cell (BMMC) transplantation is safe for moderate to severe idiopathic dilated cardiomyopathy (IDC). Clinical trials have shown that this procedure is safe and effective for ischemic patients, but little information is available regarding non-ischemic patients. Twenty-four patients with IDC, optimized therapy, age 46 ± 11.6 years, 17 males, NYHA classes II-IV, and left ventricular ejection fraction <35% were enrolled in the study. Clinical evaluation at baseline and 6 months after stem cell therapy to assess heart function included echocardiogram, magnetic resonance imaging, cardiopulmonary test, Minnesota Quality of Life Questionnaire, and NYHA classification. After cell transplantation 1 patient showed a transient increase in enzyme levels and 2 patients presented arrhythmias that were reversed within 72 h. Four patients died during follow-up, between 6 and 12 weeks after therapy. Clinical evaluation showed improvement in most patients as reflected by statistically significant decreases in Minnesota Quality of Life Questionnaire (63 ± 17.9 baseline vs 28.8 ± 16.75 at 6 months) and in class III-IV NYHA patients (18/24 baseline vs 2/20 at 6 months). Cardiopulmonary exercise tests demonstrated increased peak oxygen consumption (12.2 ± 2.4 at baseline vs 15.8 ± 7.1 mL·kg-1·min-1 at 6 months) and walked distance (377.2 ± 85.4 vs 444.1 ± 77.9 m at 6 months) in the 6-min walk test, which was not accompanied by increased left ventricular ejection fraction. Our findings indicate that BMMC therapy in IDC patients with severe ventricular dysfunction is feasible and that larger, randomized and placebo-controlled trials are warranted.
Resumo:
The purpose of this study was to investigate the protective effects of ischemic post-conditioning on damage to the barrier function of the small intestine caused by limb ischemia-reperfusion injury. Male Wistar rats were randomly divided into 3 groups (N = 36 each): sham operated (group S), lower limb ischemia-reperfusion (group LIR), and post-conditioning (group PC). Each group was divided into subgroups (N = 6) according to reperfusion time: immediate (0 h; T1), 1 h (T2), 3 h (T3), 6 h (T4), 12 h (T5), and 24 h (T6). In the PC group, 3 cycles of reperfusion followed by ischemia (each lasting 30 s) were applied immediately. At all reperfusion times (T1-T6), diamine oxidase (DAO), superoxide dismutase (SOD), and myeloperoxidase (MPO) activity, malondialdehyde (MDA) intestinal tissue concentrations, plasma endotoxin concentrations, and serum DAO, tumor necrosis factor-α (TNF-α), and interleukin-10 (IL-10) concentrations were measured in sacrificed rats. Chiu’s pathology scores for small intestinal mucosa were determined under a light microscope and showed that damage to the small intestinal mucosa was lower in group PC than in group LIR. In group PC, tissue DAO and SOD concentrations at T2 to T6, and IL-10 concentrations at T2 to T5 were higher than in group LIR (P < 0.05); however, tissue MPO and MDA concentrations, and serum DAO and plasma endotoxin concentrations at T2 to T6, as well as TNF-α at T2 and T4 decreased significantly (P < 0.05). These results show that ischemic post-conditioning attenuated the permeability of the small intestines after limb ischemia-reperfusion injury. The protective mechanism of ischemic post-conditioning may be related to inhibition of oxygen free radicals and inflammatory cytokines that cause organ damage.
Resumo:
Inhibition of type-5 phosphodiesterase by sildenafil decreases capacitative Ca2+ entry mediated by transient receptor potential proteins (TRPs) in the pulmonary artery. These families of channels, especially the canonical TRP (TRPC) subfamily, may be involved in the development of bronchial hyperresponsiveness, a hallmark of asthma. In the present study, we evaluated i) the effects of sildenafil on tracheal rings of rats subjected to antigen challenge, ii) whether the extent of TRPC gene expression may be modified by antigen challenge, and iii) whether inhibition of type-5 phosphodiesterase (PDE5) may alter TRPC gene expression after antigen challenge. Sildenafil (0.1 µM to 0.6 mM) fully relaxed carbachol-induced contractions in isolated tracheal rings prepared from naive male Wistar rats (250-300 g) by activating the NO-cGMP-K+ channel pathway. Rats sensitized to antigen by intraperitoneal injections of ovalbumin were subjected to antigen challenge by ovalbumin inhalation, and their tracheal rings were used to study the effects of sildenafil, which more effectively inhibited contractions induced by either carbachol (10 µM) or extracellular Ca2+ restoration after thapsigargin (1 µM) treatment. Antigen challenge increased the expression of the TRPC1 and TRPC4 genes but not the expression of the TRPC5 and TRPC6 genes. Applied before the antigen challenge, sildenafil increased the gene expression, which was evaluated by RT-PCR, of TRPC1 and TRPC6, decreased TRPC5 expression, and was inert against TRPC4. Thus, we conclude that PDE5 inhibition is involved in the development of an airway hyperresponsive phenotype in rats after antigen challenge by altering TRPC gene expression.
Resumo:
Abstract Coronary artery disease is the leading cause of death in the developed world and in developing countries. Acute mortality from acute myocardial infarction (MI) has decreased in the last decades. However, the incidence of heart failure (HF) in patients with healed infarcted areas is increasing. Therefore, HF prevention is a major challenge to the health system in order to reduce healthcare costs and to provide a better quality of life. Animal models of ischemia and infarction have been essential in providing precise information regarding cardiac remodeling. Several of these changes are maladaptive, and they progressively lead to ventricular dilatation and predispose to the development of arrhythmias, HF and death. These events depend on cell death due to necrosis and apoptosis and on activation of the inflammatory response soon after MI. Systemic and local neurohumoral activation has also been associated with maladaptive cardiac remodeling, predisposing to HF. In this review, we provide a timely description of the cardiovascular alterations that occur after MI at the cellular, neurohumoral and electrical level and discuss the repercussions of these alterations on electrical, mechanical and structural dysfunction of the heart. We also identify several areas where insufficient knowledge limits the adoption of better strategies to prevent HF development in chronically infarcted individuals.
Resumo:
Neonatal Sprague-Dawley rats were randomly divided into normal control, mild hypoxia-ischemia (HI), and severe HI groups (N = 10 in each group at each time) on postnatal day 7 (P7) to study the effect of mild and severe HI on anxiety-like behavior and the expression of tyrosine hydroxylase (TH) in the substantia nigra (SN). The mild and severe HI groups were exposed to hypoxia (8% O2/92% N2) for 90 and 150 min, respectively. The elevated plus-maze (EPM) test was performed to assess anxiety-like behavior by measuring time spent in the open arms (OAT) and OAT%, and immunohistochemistry was used to determine the expression of TH in the SN at P14, P21, and P28. OAT and OAT% in the EPM were significantly increased in both the mild (1.88-, 1.99-, and 2.04-fold, and 1.94-, 1.51-, and 1.46-fold) and severe HI groups (1.69-, 1.68-, and 1.87-fold, and 1.83-, 1.43-, and 1.39-fold, respectively; P < 0.05). The percent of TH-positive cells occupying the SN area was significantly and similarly decreased in both the mild (17.7, 40.2, and 47.2%) and severe HI groups (16.3, 32.2, and 43.8%, respectively; P < 0.05). The decrease in the number of TH-positive cells in the SN and the level of protein expression were closely associated (Pearson correlation analysis: r = 0.991, P = 0.000 in the mild HI group and r = 0.974, P = 0.000 in the severe HI group) with the impaired anxiety-like behaviors. We conclude that neonatal HI results in decreased anxiety-like behavior during the juvenile period of Sprague-Dawley rats, which is associated with the decreased activity of TH in the SN. The impairment of anxiety and the expression of TH are not likely to be dependent on the severity of HI.
Resumo:
Cardiovascular complications are a leading cause of mortality in patients with diabetes mellitus (DM). The present study was designed to investigate the effects of trimetazidine (TMZ), an anti-angina drug, on transient outward potassium current (Ito) remodeling in ventricular myocytes and the plasma contents of free fatty acid (FFA) and glucose in DM. Sprague-Dawley rats, 8 weeks old and weighing 200-250 g, were randomly divided into three groups of 20 animals each. The control group was injected with vehicle (1 mM citrate buffer), the DM group was injected with 65 mg/kg streptozotocin (STZ) for induction of type 1 DM, and the DM + TMZ group was injected with the same dose of STZ followed by a 4-week treatment with TMZ (60 mg·kg-1·day-1). All animals were then euthanized and their hearts excised and subjected to electrophysiological measurements or gene expression analyses. TMZ exposure significantly reversed the increased plasma FFA level in diabetic rats, but failed to change the plasma glucose level. The amplitude of Ito was significantly decreased in left ventricular myocytes from diabetic rats relative to control animals (6.25 ± 1.45 vs 20.72 ± 2.93 pA/pF at +40 mV). The DM-associated Ito reduction was attenuated by TMZ. Moreover, TMZ treatment reversed the increased expression of the channel-forming alpha subunit Kv1.4 and the decreased expression of Kv4.2 and Kv4.3 in diabetic rat hearts. These data demonstrate that TMZ can normalize, or partially normalize, the increased plasma FFA content, the reduced Ito of ventricular myocytes, and the altered expression Kv1.4, Kv4.2, and Kv4.3 in type 1 DM.
Resumo:
Our objective was to investigate the protein level of phosphorylated N-methyl-D-aspartate (NMDA) receptor-1 at serine 897 (pNR1 S897) in both NMDA-induced brain damage and hypoxic-ischemic brain damage (HIBD), and to obtain further evidence that HIBD in the cortex is related to NMDA toxicity due to a change of the pNR1 S897 protein level. At postnatal day 7, male and female Sprague Dawley rats (13.12 ± 0.34 g) were randomly divided into normal control, phosphate-buffered saline (PBS) cerebral microinjection, HIBD, and NMDA cerebral microinjection groups. Immunofluorescence and Western blot (N = 10 rats per group) were used to examine the protein level of pNR1 S897. Immunofluorescence showed that control and PBS groups exhibited significant neuronal cytoplasmic staining for pNR1 S897 in the cortex. Both HIBD and NMDA-induced brain damage markedly decreased pNR1 S897 staining in the ipsilateral cortex, but not in the contralateral cortex. Western blot analysis showed that at 2 and 24 h after HIBD, the protein level of pNR1 S897 was not affected in the contralateral cortex (P > 0.05), whereas it was reduced in the ipsilateral cortex (P < 0.05). At 2 h after NMDA injection, the protein level of pNR1 S897 in the contralateral cortex was also not affected (P > 0.05). The levels in the ipsilateral cortex were decreased, but the change was not significant (P > 0.05). The similar reduction in the protein level of pNR1 S897 following both HIBD and NMDA-induced brain damage suggests that HIBD is to some extent related to NMDA toxicity possibly through NR1 phosphorylation of serine 897.
Resumo:
A low concentration of nitric oxide associated with a high concentration of asymmetric dimethylarginine (ADMA) can explain the lack of ischemic cardioprotection observed in the presence of hypercholesterolemia. The objective of the present study was to evaluate the effect of hypercholesterolemia on ischemic pre- and postconditioning and its correlation with plasma concentrations of ADMA. Male Wistar rats (6-8 weeks old) fed a 2% cholesterol diet (n = 21) for 8 weeks were compared to controls (n = 25) and were subjected to experimental myocardial infarction and reperfusion, with ischemic pre- and postconditioning. Total cholesterol and ADMA were measured in plasma before the experimental infarct and the infarct area was quantified. Weight, total cholesterol and plasma ADMA (means ± SE; 1.20 ± 0.06, 1.27 ± 0.08 and 1.20 ± 0.08 vs0.97 ± 0.04, 0.93 ± 0.05 and 0.97 ± 0.04 µM) were higher in animals on the hypercholesterolemic diet than in controls, respectively. Cardioprotection did not reduce infarct size in the hypercholesterolemic animals (pre: 13.55% and post: 8% compared to 7.95% observed in the group subjected only to ischemia and reperfusion), whereas infarct size was reduced in the animals on a normocholesterolemic diet (pre: 8.25% and post: 6.10% compared to 12.31%). Hypercholesterolemia elevated ADMA and eliminated the cardioprotective effects of ischemic pre- and postconditioning in rats.