64 resultados para Interstellar medium
Resumo:
Halotolerant or halophilic (Archaeabacteria) microorganisms can be found in salted and ripening fish products that are not affected by salt. They can be moderate or extremely halophilic bacteria. The extremely halophilic bacteria require between 15-30% of NaCl for growth. The extremely halophilic archaeobacteria may be selectively isolated in different media. The aim of this work was to determine the effectiveness of the Salt-Agar-Milk medium, a medium modified in our laboratory through the addition of MgSO4 and KCl - named SAMm, and its effect on the bacterial growth by means of comparison with other media, with and without milk, determining time of incubation and counting. Two samples of salted fish from local fish salting factories and two laboratory strains were used. The factory samples were matured anchovy and anchovy fillets in oil, and the laboratory strains were: Haloarcula spp. (proteolytic) and Halococcus spp. (non-proteolytic). The following media were alternatively used for the isolation of extremely halophilic bacteria: IRAM; Formulation of Gibbons and collaborators, Cod Milk agar, and SAMm. IRAM and Gibbons were also used enriched with milk. In the SAMm medium, there were obtained count values similar or higher than the ones of the traditional media; besides the simplicity of its elaboration, the possibility to obtain positive results two or three days earlier also added to its benefit. Consequently, it can be considered an alternative to the media traditionally used for the studied halophilic bacteria.
Resumo:
The conversion of p-coumaric acid, ferulic acid, and caffeic acid into 4-ethylphenol, 4-ethylguaiacol and 4-ethylcatechol was studied in Dekkera bruxellensis ISA 1791 under defined conditions in a synthetic medium and in a red wine. Liquid chromatography (HPLC-DAD) was used to quantify the phenolic acids, and gas chromatography (GC) coupled to a FID detector was used to quantify volatile phenols using a novel analytical methodology that does not require sample derivatization. Identification was achieved by gas chromatography-mass detection (GC-MS). The results show that phenolic acids concentration decreases while volatile phenols concentration increases. The proportion of caffeic acid taken up by Dekkera bruxellensis is lower than that for p-coumaric or ferulic acid; therefore less 4-ethylcatechol is formed. More important, 4-ethylcathecol synthesis by Dekkera bruxellensis in wine has never been demonstrated so far. These results contribute decisively to a better understanding of the origin of the volatile phenols in wines. The accumulation of these compounds in wine is nowadays regarded as one of the key factors of quality control.
Resumo:
This study aimed to compare Lactobacillus rhamnosus growth in MRS (de Man, Rogosa and Sharpe) broth and a culture medium containing milk whey (MMW) and to evaluate aflatoxin B1 (AFB1) adsorption capacity by bacterial cells produced in both culture media. L. rhamnosus cells were cultivated in MRS broth and MMW (37 °C, 24 hours), and bacterial cell concentration was determined spectrophotometrically at 600 nm. AFB1 (1 µg/ml) adsorption assays were conducted using 1 x 10(10) non-viable L. rhamnosus cells (121 °C, 15 minutes) at pHs 3.0 and 6.0 and contact time of 60 minutes. AFB1 quantification was performed by High Performance Liquid Chromatography. Bacterial cell concentration in MMW was higher (9.84 log CFU/ml) than that in MRS broth (9.63 log CFU/ml). There were no significant differences between AFB1 binding results at the same pH value (3.0 or 6.0) for the cells cultivated in MRS broth (46.0% and 35.8%, respectively) and in MMW (43.7% and 25.8%, respectively), showing that MMW can adequately replace the MRS broth. Therefore, it can be concluded that the use of L. rhamnosus cells cultivated in MMW offers advantages such as reduction in large scale production costs, improvement of environmental sustainability, and being a practicable alternative for decontamination of food products susceptible to aflatoxin contamination.
Resumo:
Pseudomonas oleovorans were grown on sugary cassava extracts supplemented with andiroba oil for the synthesis of a mediumchain- length polyhydroxyalkanoate (PHA MCL). The concentration of total sugars in the extract was approximately: 40 g/L in culture 1, 15 g/L in cultures 2 and 3, and 10 g/L in culture 4. Supplementation with 1% andiroba oil and 0.2 g/L of (NH4)2HPO4 was performed 6.5 hours after growth in culture 3, and supplementation with the same amount of andiroba oil and 2.4 g/L of (NH4)2HPO4 was performed at the beginning of growth in culture 4. The synthesis resulted mainly in 3-hydroxy-decanoate and 3-hydroxy-dodecanoate units; 3-hydroxy-butyrate, 3-hydroxy-hexanoate; and 3-hydroxy-octanoate monomers were also produced but in smaller proportions. P. oleovorans significantly accumulated PHA MCL in the deceleration phase of growth with an oxygen limitation but with sufficient nitrogen concentration to maintain cell growth. The sugary cassava extract supplemented with andiroba oil proved to be a potential substrate for PHA MCL production.