89 resultados para Integrity Commissionner
Resumo:
Hypocitraturia (HCit) is one of the most remarkable features of renal tubular acidosis, but an acidification defect is not seen in the majority of hypocitraturic patients, whose disease is denoted idiopathic hypocitraturia. In order to assess the integrity of urinary acidification mechanisms in hypocitraturic idiopathic calcium stone formers, we studied two groups of patients, hypocitraturic (HCit, N = 21, 39.5 ± 11.5 years, 11 females and 10 males) and normocitraturic (NCit, N = 23, 40.2 ± 11.7 years, 16 females and 7 males) subjects, during a short ammonium chloride loading test lasting 8 h. During the baseline period HCit patients showed significantly higher levels of titratable acid (TA). After the administration of ammonium chloride, mean urinary pH (3rd to 8th hour) and TA and ammonium excretion did not differ significantly between groups. Conversely, during the first hour mean urinary pH was lower and TA and ammonium excretion was higher in HCit. The enhanced TA excretion by HCit during the baseline period and during the first hour suggests that the phosphate buffer mechanism is activated. The earlier response in ammonium excretion by HCit further supports other evidence that acidification mechanisms react promptly. The present results suggest that in the course of lithiasic disease, hypocitraturia coexists with subtle changes in the excretion of hydrogen ions in basal situations.
Resumo:
In most of cells bradykinin (BK) induces intracellular calcium mobilization. In pancreatic beta cells intracellular calcium is a major signal for insulin secretion. In these cells, glucose metabolism yields intracellular ATP which blocks membrane potassium channels. The membrane depolarizes, voltage-dependent Ca2+ channels are activated and the intracellular calcium load allows insulin secretion. Repolarization occurs due to activation of the Ca2+-dependent K+ channel. The insulin secretion depends on the integrity of this oscillatory process (bursts). Therefore, we decided to determine whether BK (100 nM) induces bursts in the presence of a non-stimulatory glucose concentration (5.6 mM). During continuous membrane voltage recording, our results showed that bursts were obtained with 11 mM glucose, blocked with 5.6 mM glucose and recovered with 5.6 mM glucose plus 100 nM BK. Thus, the stimulatory process obtained in the presence of BK and of a non-stimulatory concentration of glucose in the present study suggests that BK may facilitate the action of glucose on beta cell secretion.
Resumo:
Loxoscelism, the term used to describe lesions and clinical manifestations induced by brown spider's venom (Loxosceles genus), has attracted much attention over the last years. Brown spider bites have been reported to cause a local and acute inflammatory reaction that may evolve to dermonecrosis (a hallmark of envenomation) and hemorrhage at the bite site, besides systemic manifestations such as thrombocytopenia, disseminated intravascular coagulation, hemolysis, and renal failure. The molecular mechanisms by which Loxosceles venoms induce injury are currently under investigation. In this review, we focused on the latest reports describing the biological and physiopathological aspects of loxoscelism, with reference mainly to the proteases recently described as metalloproteases and serine proteases, as well as on the proteolytic effects triggered by L. intermedia venom upon extracellular matrix constituents such as fibronectin, fibrinogen, entactin and heparan sulfate proteoglycan, besides the disruptive activity of the venom on Engelbreth-Holm-Swarm basement membranes. Degradation of these extracellular matrix molecules and the observed disruption of basement membranes could be related to deleterious activities of the venom such as loss of vessel and glomerular integrity and spreading of the venom toxins to underlying tissues.
Resumo:
Pressor responses elicited by stimulation of the nucleus raphe obscurus (NRO) depend on the integrity of the rostral ventrolateral medulla (RVLM). Therefore, to test the participation of excitatory amino acid (EAA) receptors in the cardiovascular responses evoked by NRO stimulation (1 ms, 100 Hz, 40-70 µA, for 10 s), the EAA antagonist kynurenic acid (Kyn) was microinjected at different sites in the ventrolateral medullar surface (2.7 nmol/200 nl) of male Wistar rats (270-320 g, N = 39) and NRO stimulation was repeated. The effects of NRO stimulation were: hypertension (deltaMAP = +43 ± 1 mmHg, P<0.01), bradycardia (deltaHR = -30 ± 7 bpm, P<0.01) and apnea. Bilateral microinjection of Kyn into the RVLM, which did not change baseline parameters, almost abolished the bradycardia induced by NRO stimulation (deltaHR = -61 ± 3 before vs -2 ± 3 bpm after Kyn, P<0.01, N = 7). Unilateral microinjection of Kyn into the CVLM did not change baseline parameters or reduce the pressor response to NRO stimulation (deltaMAP = +46 ± 5 before vs +48 ± 5 mmHg after Kyn, N = 6). Kyn bilaterally microinjected into the caudal pressor area reduced blood pressure and heart rate and almost abolished the pressor response to NRO stimulation (deltaMAP = +46 ± 4 mmHg before vs +4 ± 2 mmHg after Kyn, P<0.01, N = 7). These results indicate that EAA receptors on the medullary ventrolateral surface play a role in the modulation of the cardiovascular responses induced by NRO stimulation, and also suggest that the RVLM participates in the modulation of heart rate responses and that the caudal pressor area modulates the pressor response following NRO stimulation.
Resumo:
The objective of the present study was to determine the effects of retinoic acid on the growth of the mouse mammary cells HC11 and HC11ras, which are a model for in vitro breast cancer progression. The expression of the two classes (RARs and RXRs) of retinoic acid receptor mRNAs was determined by Northern blot analysis. Receptor functional integrity was determined by testing whether RAR ß mRNA could be induced by retinoic acid. The effects of a 72-h exposure to 50 µM 13-cis retinoic acid on HC11 and HC11ras cell proliferation and HC11 cell differentiation were investigated by flow cytometric cell cycle analysis, and by determination of ß-casein mRNA expression, respectively. The possibility that retinoic acid would induce the expression of the vitamin D receptor and synergize with vitamin D, a known inhibitor of HC11 cell growth, was also investigated. HC11 cells expressed higher mRNA levels of both RAR a and RAR g when compared to HC11ras cells. In contrast, RAR ß, as well as RXR a, ß and g expression was low in both HC11 and HC11ras cells. In addition, RAR ß mRNA was induced by retinoic acid treatment in both cells. In spite of these observations, no effects were seen on cell proliferation or differentiation upon exposure to retinoic acid. Neither vitamin D receptor induction nor synergy with vitamin D on growth inhibition was observed. We conclude that the RAR expression profile could be related to the transformed state in HC11ras cells and that the retinoic acid resistance observed merits further investigation.
Resumo:
Previous studies have suggested a critical role for the vagi during the hypertonic resuscitation of hemorrhagic shocked dogs. Vagal blockade prevented the full hemodynamic and metabolic recovery and increased mortality. This interpretation, however, was challenged on the grounds that the blockade also abolished critical compensatory mechanisms and therefore the animals would die regardless of treatment. To test this hypothesis, 29 dogs were bled (46.0 ± 6.2 ml/kg, enough to reduce the mean arterial pressure to 40 mmHg) and held hypotensive for 45 min. After 40 min, vagal activity was blocked in a reversible manner (0ºC/15 min) and animals were resuscitated with 7.5% NaCl (4 ml/kg), 0.9% NaCl (32 ml/kg), or the total volume of shed blood. In the vagal blocked isotonic saline group, 9 of 9 dogs, and in the vagal blocked replaced blood group, 11 of 11 dogs survived, with full hemodynamic and metabolic recovery. However, in the hypertonic vagal blocked group, 8 of 9 dogs died within 96 h. Survival of shocked dogs which received hypertonic saline solution was dependent on vagal integrity, while animals which received isotonic solution or blood did not need this neural component. Therefore, we conclude that hypertonic resuscitation is dependent on a neural component and not only on the transient plasma volume expansion or direct effects of hyperosmolarity on vascular reactivity or changes in myocardial contraction observed immediately after the beginning of infusion.
Resumo:
Diseases such as hypertension, atherosclerosis, hyperlipidemia, and diabetes are associated with vascular functional and structural changes including endothelial dysfunction, altered contractility and vascular remodeling. Cellular events underlying these processes involve changes in vascular smooth muscle cell (VSMC) growth, apoptosis/anoikis, cell migration, inflammation, and fibrosis. Many factors influence cellular changes, of which angiotensin II (Ang II) appears to be amongst the most important. The physiological and pathophysiological actions of Ang II are mediated primarily via the Ang II type 1 receptor. Growing evidence indicates that Ang II induces its pleiotropic vascular effects through NADPH-driven generation of reactive oxygen species (ROS). ROS function as important intracellular and intercellular second messengers to modulate many downstream signaling molecules, such as protein tyrosine phosphatases, protein tyrosine kinases, transcription factors, mitogen-activated protein kinases, and ion channels. Induction of these signaling cascades leads to VSMC growth and migration, regulation of endothelial function, expression of pro-inflammatory mediators, and modification of extracellular matrix. In addition, ROS increase intracellular free Ca2+ concentration ([Ca2+]i), a major determinant of vascular reactivity. ROS influence signaling molecules by altering the intracellular redox state and by oxidative modification of proteins. In physiological conditions, these events play an important role in maintaining vascular function and integrity. Under pathological conditions ROS contribute to vascular dysfunction and remodeling through oxidative damage. The present review focuses on the biology of ROS in Ang II signaling in vascular cells and discusses how oxidative stress contributes to vascular damage in cardiovascular disease.
Resumo:
Mitochondrial ion transport, oxidative phosphorylation, redox balance, and physical integrity are key factors in tissue survival following potentially damaging conditions such as ischemia/reperfusion. Recent research has demonstrated that pharmacologically activated inner mitochondrial membrane ATP-sensitive K+ channels (mitoK ATP) are strongly cardioprotective under these conditions. Furthermore, mitoK ATP are physiologically activated during ischemic preconditioning, a procedure which protects against ischemic damage. In this review, we discuss mechanisms by which mitoK ATP may be activated during preconditioning and the mitochondrial and cellular consequences of this activation, focusing on end-effects which may promote ischemic protection. These effects include decreased loss of tissue ATP through reverse activity of ATP synthase due to increased mitochondrial matrix volumes and lower transport of adenine nucleotides into the matrix. MitoK ATP also decreases the release of mitochondrial reactive oxygen species by promoting mild uncoupling in concert with K+/H+ exchange. Finally, mitoK ATP activity may inhibit mitochondrial Ca2+ uptake during ischemia, which, together with decreased reactive oxygen release, can prevent mitochondrial permeability transition, loss of organelle function, and loss of physical integrity. We discuss how mitochondrial redox status, K+ transport, Ca2+ transport, and permeability transitions are interrelated during ischemia/reperfusion and are determinant factors regarding the extent of tissue damage.
Resumo:
The nerve biopsies of 11 patients with pure neuritic leprosy were submitted to routine diagnostic procedures and immunoperoxidase staining with antibodies against axonal (neurofilament, nerve growth factor receptor (NGFr), and protein gene product (PGP) 9.5) and Schwann cell (myelin basic protein, S-100 protein, and NGFr) markers. Two pairs of non-adjacent histological cross-sections of the peripheral nerve were removed for quantification. All the fascicles of the nerve were examined with a 10X-ocular and 40X-objective lens. The immunohistochemistry results were compared to the results of semithin section analysis and clinical and electroneuromyographic data. Neurofilament staining was reduced in 100% of the neuritic biopsies. NGFr positivity was also reduced in 81.8%, PGP staining in 100% of the affected nerves, S100 positivity in 90.9%, and myelin basic protein immunoreactivity in 90.9%. Hypoesthesia was associated with decreased NGFr (81.8%) and PGP staining (90.9%). Reduced potential amplitudes (electroneuromyographic data) were found to be associated with reduced PGP 9.5 (63.6%) and nerve fiber neurofilament staining (45.4%) by immunohistochemistry and with loss of myelinated fibers (100%) by semithin section analysis. On the other hand, the small fibers (immunoreactive dots) seen amid inflammatory cells continued to be present even after 40% of the larger myelinated fibers had disappeared. The present study shows an in-depth view of the destructive effects of leprosy upon the expression of neural markers and the integrity of nerve fiber. The association of these structural changes with the clinical and electroneuromyographic manifestations of leprosy peripheral neuropathy was also discussed.
Resumo:
The objective of the present study was to investigate the effects of the direct addition of pentoxifylline (PF) to the ejaculates of men with poor sperm quality before freezing on post-thaw sperm motility, viability, acrosome integrity, and agonist-induced acrosome reaction. Semen specimens from 16 infertile men with impaired sperm count and motility (oligoasthenozoospermia) were divided into two equal aliquots: one received no treatment (control) while the other was incubated with 5 mM PF (treated). Both aliquots were cryopreserved by the liquid nitrogen vapor method. Motility was assessed according to WHO criteria. Acrosome integrity and spontaneous and calcium ionophore-induced acrosome reactions were assessed with fluorescein isothiocyanate-conjugated peanut agglutinin combined with a supra-vital dye (Hoechst-33258). Cryopreservation impaired sperm motility (percentage reduction: 87.4 (interquartile range, IQ: 70.3-92.9) vs 89.1 (IQ: 72.7-96.0%)), viability (25.9 (IQ: 22.2-29.7) vs 25.6 (IQ: 19.7-40.3%)) and acrosome integrity (18.9 (IQ: 5.4-38.9) vs 26.8 (IQ: 0.0-45.2%)) to the same extent in both treated and control aliquots. However, PF treatment before freezing improved the acrosome reaction to ionophore challenge test scores in cryopreserved spermatozoa (9.7 (IQ: 6.6-19.7) vs 4.8 (IQ: 0.5-6.8%); P = 0.002). These data show that pre-freeze treatment of poor quality human sperm with pentoxifylline did not improve post-thaw motility or viability nor did it prevent acrosomal loss during the freeze-thaw process. However, PF, as used, improved the ability of thawed spermatozoa to undergo the acrosome reaction in response to calcium ionophore. The present data indicate that treatment of poor quality human sperm with PF may enhance post-thaw sperm fertilizing ability.
Resumo:
The objective of the present study was to investigate the effects of recombinant human growth hormone (rhGH) on the intestinal mucosa barrier of septic rats and explore its possible mechanism. Female Sprague-Dawley rats were randomized into three groups: control, Escherichia coli-induced sepsis (S) and treatment (T) groups. Groups S and T were subdivided into subgroups 1d and 3d, respectively. Expression of liver insulin-like growth factor-1 (IGF-1) mRNA, Bcl-2 and Bax protein levels and the intestinal Bax/Bcl-2 ratio, and plasma GH and IGF-1 levels were determined. Histological examination of the intestine was performed and bacterial translocation was determined. rhGH significantly attenuated intestinal mucosal injuries and bacterial translocation in septic rats, markedly decreased Bax protein levels, inhibited the decrease of Bcl-2 protein expression and maintained the Bax/Bcl-2 ratio in the intestine. rhGH given after sepsis significantly improved levels of plasma GH (T1d: 1.28 ± 0.24; T3d: 2.14 ± 0.48 µg/L vs S1d: 0.74 ± 0.12; S3d: 0.60 ± 0.18 µg/L; P < 0.05) and IGF-1 (T1d: 168.94 ± 65.67; T3d: 201.56 ± 64.98 µg/L vs S1d: 116.72 ± 13.96; S3d: 107.50 ± 23.53 µg/L; P < 0.05) and expression of liver IGF-1 mRNA (T1d: 0.98 ± 0.20; T3d: 1.76 ± 0.17 vs S1d: 0.38 ± 0.09; S3d: 0.46 ± 0.10; P < 0.05). These findings indicate that treatment with rhGH had beneficial effects on the maintenance of the integrity of the intestinal mucosa barrier in septic rats.
Resumo:
Iron is an essential metal for all living organisms. However, iron homeostasis needs to be tightly controlled since iron can mediate the production of reactive oxygen species, which can damage cell components and compromise the integrity and/or cause DNA mutations, ultimately leading to cancer. In eukaryotes, iron-regulatory protein 1 (IRP1) plays a central role in the control of intracellular iron homeostasis. This occurs by interaction of IRP1 with iron-responsive element regions at 5' of ferritin mRNA and 3' of transferrin mRNA which, respectively, represses translation and increases mRNA stability. We have expressed IRP1 using the plasmid pT7-His-hIRP1, which codifies for human IRP1 attached to an NH2-terminal 6-His tag. IRP1 was expressed in Escherichia coli using the strategy of co-expressing chaperonins GroES and GroEL, in order to circumvent inclusion body formation and increase the yield of soluble protein. The protein co-expressed with these chaperonins was obtained mostly in the soluble form, which greatly increased the efficiency of protein purification. Metal affinity and FPLC ion exchange chromatography were used in order to obtain highly purified IRP1. Purified protein was biologically active, as assessed by electrophoretic mobility shift assay, and could be converted to the cytoplasmic aconitase form. These results corroborate previous studies, which suggest the use of folding catalysts as a powerful strategy to increase protein solubility when expressing heterologous proteins in E. coli.
Resumo:
New strategies are being devised to limit the impact of renal sclerosis on graft function. Individualization of immunosuppression, specifically the interruption of calcineurin-inhibitors has been tried in order to promote better graft survival once chronic graft dysfunction has been established. However, the long-term impact of these approaches is still not totally clear. Nevertheless, patients at higher risk for tubular atrophy and interstitial fibrosis (TA/IF) development should be carefully monitored for tubular function as well as glomerular performance. Since tubular-interstitial impairment is an early event in TA/IF pathogenesis and associated with graft function, it seems reasonable that strategies directed at assessing tubular structural integrity and function would yield important functional and prognostic data. The measurement of small proteins in urine such as α-1-microglobulin, N-acetyl-beta-D-glucosaminidase, alpha/pi S-glutathione transferases, β-2 microglobulin, and retinol binding protein is associated with proximal tubular cell dysfunction. Therefore, its straightforward assessment could provide a powerful tool in patient monitoring and ongoing clinical assessment of graft function, ultimately helping to facilitate longer patient and graft survival associated with good graft function.
Resumo:
Human infection with fish parasites can result from the ingestion of incompletely cooked or raw fish, giving origin to parasitic diseases such as anisakiasis, caused by parasites of the Anisakidae family. The present study assessed the in vitro larvicidal effect of two monoterpene compounds, geraniol and citronellal, against Contracaecum sp (Nematoda: Anisakidae). Four hundred live larvae of Contracaecum sp obtained from "traíra" fish (Hoplias malabaricus, Bloch, 1974) were analyzed on 40 Petri dishes (10 larvae each) with the compounds to be tested. The final concentrations tested for each compound were 250, 125, 62.5, and 31.2 µg/mL and the evaluation was carried out at five different times (2, 4, 8, 24, and 48 h). The larvicidal action of geraniol and citronellal was statistically superior (P < 0.005) to the control (1% ethanol) at concentrations of 250 and 31.2 µg/mL (geraniol) and 250, 125, and 62.5 μg/mL (citronellal). However, no larvicidal activity was observed at concentrations of 125 and 62.5 µg/mL for geraniol and 31.2 µg/mL for citronellal. When the larvicidal action of geraniol was compared to that of citronellal, the former was found to be statistically superior (P < 0.05) to the latter at concentrations of 250 and 31.2 μg/mL. On the other hand, citronellal was statistically superior (P < 0.005) to geraniol at concentrations of 125 and 62.5 μg/mL. The larval mortality rate in terms of time (hours) was higher for geraniol with the passing of time at the 250 μg/mL concentration. At this concentration (in 48 h) the best larvicidal effect was observed with 90% lethality. The larvae were considered to be dead using no motility and loss of structural integrity as parameters. The data indicate that natural terpene compounds should be more explored for antihelminthic activity and can be useful for other studies about anisakiasis treatment.
Resumo:
Cryopreservation has an immunomodulating effect on tracheal tissue as a result of class II antigen depletion due to epithelium exfoliation. However, not all epithelium is detached. We evaluated the role of apoptosis in the remaining epithelium of 30 cryopreserved tracheal grafts. Caspase-3 immunoreactivity of tracheal epithelium was studied in canine tracheal segments cryopreserved with F12K medium, with or without subsequent storage in liquid nitrogen at -196°C for 15 days. Loss of structural integrity of tracheal mixed glands was observed in all cryopreserved tracheal segments. Caspase-3 immunoreactivity in tracheal mucosa and in mixed glands was significantly decreased, in contrast to the control group and to cryopreserved tracheal segments in which it remained high, due to the effect of storage in liquid nitrogen (P < 0.05, ANOVA and Tukey test). We conclude that apoptosis can be triggered in epithelial cells during tracheal graft harvesting even prior to cryopreservation, and although the epithelial caspase-3 immunoreactivity is reduced in tracheal cryopreservation, this could be explained by increased cell death. Apoptosis cannot be stopped during tracheal cryopreservation.