97 resultados para Insect Viruses
Resumo:
Flaviviruses cause severe acute febrile and haemorrhagic infections, including dengue and yellow fever and the pathogenesis of these infections is caused by an exacerbated immune response. Dendritic cells (DCs) are targets for dengue virus (DENV) and yellow fever virus (YF) replication and are the first cell population to interact with these viruses during a natural infection, which leads to an induction of protective immunity in humans. We studied the infectivity of DENV2 (strain 16681), a YF vaccine (YF17DD) and a chimeric YF17D/DENV2 vaccine in monocyte-derived DCs in vitro with regard to cell maturation, activation and cytokine production. Higher viral antigen positive cell frequencies were observed for DENV2 when compared with both vaccine viruses. Flavivirus-infected cultures exhibited dendritic cell activation and maturation molecules. CD38 expression on DCs was enhanced for both DENV2 and YF17DD, whereas OX40L expression was decreased as compared to mock-stimulated cells, suggesting that a T helper 1 profile is favoured. Tumor necrosis factor (TNF)-α production in cell cultures was significantly higher in DENV2-infected cultures than in cultures infected with YF17DD or YF17D/DENV. In contrast, the vaccines induced higher IFN-α levels than DENV2. The differential cytokine production indicates that DENV2 results in TNF induction, which discriminates it from vaccine viruses that preferentially stimulate interferon expression. These differential response profiles may influence the pathogenic infection outcome.
Resumo:
We prospectively sampled flavivirus-naïve horses in northern Colombia to detect West Nile virus (WNV) and St. Louis encephalitis virus (SLEV) seroconversion events, which would indicate the current circulation of these viruses. Overall, 331 (34.1%) of the 971 horses screened were positive for past infection with flaviviruses upon initial sampling in July 2006. During the 12-month study from July 2006-June 2007, 33 WNV seroconversions and 14 SLEV seroconversions were detected, most of which occurred in the department of Bolivar. The seroconversion rates of horses in Bolivar for the period of March-June 2007 reached 12.4% for WNV and 6.7% for SLEV. These results comprise the first serologic evidence of SLEV circulation in Colombia. None of the horses sampled developed symptoms of encephalitis within three years of initial sampling. Using seroconversions in sentinel horses, we demonstrated an active circulation of WNV and SLEV in northern Colombia, particularly in the department of Bolivar. The absence of WNV-attributed equine or human disease in Colombia and elsewhere in the Caribbean Basin remains a topic of debate and speculation.
Resumo:
The aim of this study was to determine the occurrences of the group A rotavirus (RVA), norovirus (NoV) and human adenovirus (HAdV) in the surface waters of an urban lagoon (Rodrigo de Freitas Lagoon) in the city of Rio de Janeiro, Brazil. During one year of surveillance, water samples were obtained from the lagoon and other interconnected ecosystems (river and beach). The samples were concentrated using an adsorption-elution method with a negatively charged membrane and tested by qualitative and quantitative polymerase chain reaction assays. RVA was the most prevalent virus detected (24.3%) with a viral load ranging from 3.0 x 10¹-5.6 x 10(4) genome copies/L, followed by NoV (18.8%) and HAdV (16.7%). Considering water samples suitable for bathing, according to Escherichia coli criterion (< 2,000 most probable number/100 mL), viruses were detected in 50% (57/114) of them. Physicochemical parameters were also measured and showed possible correlations between turbidity and RVA presence and between pH and NoV presence. These data demonstrate the importance of considering viral parameters to ensure water quality and the utilisation of these parameters as additional tools for the characterisation of environmental contamination.
Resumo:
This retrospective study (April-September 2003) was designed to investigate the roles of the main viruses responsible for cases of acute infantile gastroenteritis in hospitalised children up to two years of age. The viruses were identified in 64.7% (88/136) of the cases and the detection rates of rotavirus A (RVA), norovirus (NoV) and astrovirus were 41.9% (57/136), 30.3% (24/79) and 12.7% (7/55), respectively. RVA and NoV were detected in 20 of the 24 reported nosocomial infection cases. This study identified the first circulation of the genotype NoV GII.21 in Brazil and highlights the need to establish differential diagnoses through active laboratorial surveillance.
Resumo:
The presence of enteric viruses in biosolids can be underestimated due to the inefficient methods (mainly molecular methods) used to recover the viruses from these matrices. Therefore, the goal of this study was to evaluate the different methods used to recover adenoviruses (AdV), rotavirus species A (RVA), norovirus genogroup II (NoV GII) and the hepatitis A virus (HAV) from biosolid samples at a large urban wastewater treatment plant in Brazil after they had been treated by mesophilic anaerobic digestion. Quantitative polymerase chain reaction (PCR) was used for spiking experiments to compare the detection limits of feasible methods, such as beef extract elution and ultracentrifugation. Tests were performed to detect the inhibition levels and the bacteriophage PP7 was used as an internal control. The results showed that the inhibitors affected the efficiency of the PCR reaction and that beef extract elution is a suitable method for detecting enteric viruses, mainly AdV from biosolid samples. All of the viral groups were detected in the biosolid samples: AdV (90%), RVA, NoV GII (45%) and HAV (18%), indicating the viruses' resistance to the anaerobic treatment process. This is the first study in Brazil to detect the presence of RVA, AdV, NoV GII and HAV in anaerobically digested sludge, highlighting the importance of adequate waste management.
Resumo:
Trypanosoma cruzi infects humans when infected triatomine vector excreta contaminate breaks in skin or mucosal surfaces. T. cruzi insect-derived metacyclic trypomastigotes (IMT) invade through gastric mucosa after oral challenges without any visible inflammatory changes, while cutaneous and conjunctival infections result in obvious local physical signs. In this study we compared the infectivity of T. cruzi IMT in mice after cutaneous and oral contaminative challenges simulating natural infections. The 50% infective dose (ID50) for oral challenge was 100 fold lower than the ID50for cutaneous challenge, indicating that oral mucosal transmission is more efficient than cutaneous transmission.
Resumo:
Interfering with cellular signal transduction pathways is a common strategy used by many viruses to create a propitious intracellular environment for an efficient replication. Our group has been studying cellular signalling pathways activated by the orthopoxviruses Vaccinia (VACV) and Cowpox (CPXV) and their significance to viral replication. In the present study our aim was to investigate whether the GTPase Rac1 was an upstream signal that led to the activation of MEK/ERK1/2, JNK1/2 or Akt pathways upon VACV or CPXV' infections. Therefore, we generated stable murine fibroblasts exhibiting negative dominance to Rac1-N17 to evaluate viral growth and the phosphorylation status of ERK1/2, JNK1/2 and Akt. Our results demonstrated that VACV replication, but not CPXV, was affected in dominant-negative (DN) Rac1-N17 cell lines in which viral yield was reduced in about 10-fold. Viral late gene expression, but not early, was also reduced. Furthermore, our data showed that Akt phosphorylation was diminished upon VACV infection in DN Rac1-N17 cells, suggesting that Rac1 participates in the phosphoinositide-3 kinase pathway leading to the activation of Akt. In conclusion, our results indicate that while Rac1 indeed plays a role in VACV biology, perhaps another GTPase may be involved in CPXV replication.
Resumo:
Acoustic signalling has been extensively studied in insect species, which has led to a better understanding of sexual communication, sexual selection and modes of speciation. The significance of acoustic signals for a blood-sucking insect was first reported in the XIX century by Christopher Johnston, studying the hearing organs of mosquitoes, but has received relatively little attention in other disease vectors until recently. Acoustic signals are often associated with mating behaviour and sexual selection and changes in signalling can lead to rapid evolutionary divergence and may ultimately contribute to the process of speciation. Songs can also have implications for the success of novel methods of disease control such as determining the mating competitiveness of modified insects used for mass-release control programs. Species-specific sound “signatures” may help identify incipient species within species complexes that may be of epidemiological significance, e.g. of higher vectorial capacity, thereby enabling the application of more focussed control measures to optimise the reduction of pathogen transmission. Although the study of acoustic communication in insect vectors has been relatively limited, this review of research demonstrates their value as models for understanding both the functional and evolutionary significance of acoustic communication in insects.
Resumo:
Organisms from bacteria to humans have evolved under predictable daily environmental cycles owing to the Earth’s rotation. This strong selection pressure has generated endogenous circadian clocks that regulate many aspects of behaviour, physiology and metabolism, anticipating and synchronising internal time-keeping to changes in the cyclical environment. In haematophagous insect vectors the circadian clock coordinates feeding activity, which is important for the dynamics of pathogen transmission. We have recently witnessed a substantial advance in molecular studies of circadian clocks in insect vector species that has consolidated behavioural data collected over many years, which provided insights into the regulation of the clock in the wild. Next generation sequencing technologies will facilitate the study of vector genomes/transcriptomes both among and within species and illuminate some of the species-specific patterns of adaptive circadian phenotypes that are observed in the field and in the laboratory. In this review we will explore these recent findings and attempt to identify potential areas for further investigation.
Resumo:
Triatomines have been important model organisms for behavioural research. Diverse reports about triatomine host search, pheromone communication in the sexual, shelter and alarm contexts, daily cycles of activity, refuge choice and behavioural plasticity have been published in the last two decades. In recent times, a variety of molecular genetics techniques has allowed researchers to investigate elaborate and complex questions about the genetic bases of the physiology of insects. This, together with the current characterisation of the genome sequence of Rhodnius prolixus allows the resurgence of this excellent insect physiology model in the omics era. In the present revision, we suggest that studying the molecular basis of behaviour and sensory ecology in triatomines will promote a deeper understanding of fundamental aspects of insect and, particularly, vector biology. This will allow uncovering unknown features of essential insect physiology questions for a hemimetabolous model organism, promoting more robust comparative studies of insect sensory function and cognition.
Resumo:
Viral acute gastroenteritis (AG) is a significant cause of hospitalisation in children younger than five years. Group A rotavirus (RVA) is responsible for 30% of these cases. Following the introduction of RVA immunisation in Brazil in 2006, a decreased circulation of this virus has been observed. However, AG remains an important cause of hospitalisation of paediatric patients and only limited data are available regarding the role of other enteric viruses in these cases. We conducted a prospective study of paediatric patients hospitalised for AG. Stool samples were collected to investigate human adenovirus (HAdV), RVA, norovirus (NoV) and astrovirus (AstV). NoV typing was performed by nucleotide sequencing and phylogenetic analysis. From the 225 samples tested, 60 (26%) were positive for at least one viral agent. HAdV, NoV, RVA and AstV were detected in 16%, 8%, 6% and 0% of the samples, respectively. Mixed infections were found in nine patients: HAdV/RVA (5), HAdV/NoV (3) and HAdV/NoV/RVA (1). The frequency of fever and lymphocytosis was significantly higher in virus-infected patients. Phylogenetic analysis of NoV indicated that all of these viruses belonged to genotype GII.4. The significant frequency of these pathogens in patients with AG highlights the need to routinely implement laboratory investigations.
Resumo:
Viruses are the major contributors to the morbidity and mortality of upper and lower acute respiratory infections (ARIs) for all age groups. The aim of this study was to determine the frequencies for a large range of respiratory viruses using a sensitive molecular detection technique in specimens from outpatients of all ages with ARIs. Nasopharyngeal aspirates were obtained from 162 individuals between August 2007-August 2009. Twenty-three pathogenic respiratory agents, 18 respiratory viruses and five bacteria were investigated using multiplex real-time reverse transcriptase polymerase chain reaction (RT-PCR) and indirect immunofluorescence assay (IIF). Through IIF, 33 (20.4%) specimens with respiratory virus were recognised, with influenza virus representing over half of the positive samples. Through a multiplex real-time RT-PCR assay, 88 (54.3%) positive samples were detected; the most prevalent respiratory viral pathogens were influenza, human rhinovirus and respiratory syncytial virus (RSV). Six cases of viral co-detection were observed, mainly involving RSV. The use of multiplex real-time RT-PCR increased the viral detection by 33.9% and revealed a larger number of respiratory viruses implicated in ARI cases, including the most recently described respiratory viruses [human bocavirus, human metapneumovirus, influenza A (H1N1) pdm09 virus, human coronavirus (HCoV) NL63 and HCoV HKU1].
Resumo:
An increasingly asked question is 'can we confidently link bats with emerging viruses?'. No, or not yet, is the qualified answer based on the evidence available. Although more than 200 viruses - some of them deadly zoonotic viruses - have been isolated from or otherwise detected in bats, the supposed connections between bats, bat viruses and human diseases have been raised more on speculation than on evidence supporting their direct or indirect roles in the epidemiology of diseases (except for rabies). However, we are convinced that the evidence points in that direction and that at some point it will be proved that bats are competent hosts for at least a few zoonotic viruses. In this review, we cover aspects of bat biology, ecology and evolution that might be relevant in medical investigations and we provide a historical synthesis of some disease outbreaks causally linked to bats. We provide evolutionary-based hypotheses to tentatively explain the viral transmission route through mammalian intermediate hosts and to explain the geographic concentration of most outbreaks, but both are no more than speculations that still require formal assessment.
Resumo:
The influenza A(H3N2) virus has circulated worldwide for almost five decades and is the dominant subtype in most seasonal influenza epidemics, as occurred in the 2014 season in South America. In this study we evaluate five whole genome sequences of influenza A(H3N2) viruses detected in patients with mild illness collected from January-March 2014. To sequence the genomes, a new generation sequencing (NGS) protocol was performed using the Ion Torrent PGM platform. In addition to analysing the common genes, haemagglutinin, neuraminidase and matrix, our work also comprised internal genes. This was the first report of a whole genome analysis with Brazilian influenza A(H3N2) samples. Considerable amino acid variability was encountered in all gene segments, demonstrating the importance of studying the internal genes. NGS of whole genomes in this study will facilitate deeper virus characterisation, contributing to the improvement of influenza strain surveillance in Brazil.
Resumo:
The effects of ants on the insect community on inflorescences of Byrsonima crassifolia (Malpighiaceae) were tested in an ant exclusion experiment in a cerrado vegetation in southeastern Brazil. Forty-four species of insects (23 families) and nine species of ants (6 genera and 3 subfamilies) were found on the inflorescences of B. crassifolia. The exclusion of ants, primarily Camponotus sericeiventris and Camponotus spp., reduced the treehopper population to 20% of the original abundance. Ant exclusion and time influenced the abundance of chewing (Exclusion, P<0.001; Time, P<0.002), and sucking insects (Exclusion, P<0.02; Time, P<0.01). Twice as many chewing and sucking insects were found on ant-excluded inflorescences as compared to control inflorescences (P<0.001). One and half more sucking insects were found on ant-excluded than on control inflorescences. Only time significantly influenced the richness of chewing and sucking insects associated with B. crassifolia inflorescences. Inflorescences on control branches were significantly less attacked by herbivores than inflorescences on ant-excluded branches (P<0.001). Therefore, these results suggest that the presence of ants alters the structure of insect herbivore community associated with B. crassifolia.