68 resultados para HEAT-SHOCK-PROTEIN-70


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein malnutrition induces structural, neurochemical and functional alterations in the central nervous system, leading to behavioral alterations. In the present study, we used the elevated plus-maze (EPM) as a measure of anxiety to evaluate the interaction between acute immobilization and housing conditions on the behavior of malnourished rats. Pups (6 males and 2 females) were fed by Wistar lactating dams receiving a 6% (undernourished) or 16% (well-nourished) protein diet. After weaning, the animals continued to receive the same diets ad libitum until 49 days of age when they started to receive a regular lab chow diet. From weaning to the end of the tests on day 70, the animals were housed under two different conditions, i.e., individual or in groups of three. On the 69th day, half of the animals were submitted to immobilization for 2 h, while the other half were undisturbed, and both groups were tested 24 h later for 5 min in the EPM. Independent of other factors, protein malnutrition increased, while immobilization and social isolation per se decreased, EPM exploration. Analysis of the interaction of diet vs immobilization vs housing conditions showed that the increased EPM exploration presented by the malnourished group was reversed by acute immobilization in animals reared in groups but not in animals reared individually. The interaction between immobilization and housing conditions suggests that living for a long time in social isolation is sufficiently stressful to reduce the responses to another anxiogenic procedure (immobilization), while living in groups prompts the animals to react to acute stress. Thus, it is suggested that housing condition can modulate the effects of an anxiogenic procedure on behavioral responses of malnourished rats in the EPM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A thorough understanding of protein structure and stability requires that we elucidate the molecular basis for the effects of both temperature and pressure on protein conformational transitions. While temperature effects are relatively well understood and the change in heat capacity upon unfolding has been reasonably well parameterized, the state of understanding of pressure effects is much less advanced. Ultimately, a quantitative parameterization of the volume changes (at the basis of pressure effects) accompanying protein conformational transitions will be required. The present report introduces a qualitative hypothesis based on available model compound data for the molecular basis of volume change upon protein unfolding and its dependence on temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study was undertaken to investigate the effect of administering praziquantel (PZQ), focusing on the liver stereological findings of malnourished mice infected with Schistosoma mansoni. Thirty female Swiss Webster mice (age: 21 days; weight: 8-14 g) were fed either a low-protein diet (8%) or standard chow (22% protein) for 15 days. Five mice in each group were infected with 50 cercariae each of the BH strain (Brazil). PZQ therapy (80 mg/kg body weight, per day) was started on the 50th day of infection and consisted of daily administration for 5 days. Volume density (hepatocytes, sinusoids and hepatic fibrosis) was determined by stereology using a light microscope. Body weight gain and total serum albumin levels were always lower in undernourished mice. Our stereological study demonstrated that treatment increased both volume density of hepatocytes in mice fed standard chow (47.56%, treated group and 12.06%, control) and low-protein chow (30.98%, treated group and 21.44%, control), and hepatic sinusoids [standard chow (12.52%, treated group and 9.06%, control), low-protein chow (14.42%, treated group and 8.46%, control)], while hepatic fibrosis was reduced [standard chow (39.92%, treated group and 78.88%, control) and low-protein chow (54.60%, treated group and 70.10%, control)]. On the other hand, mice fed low-protein chow decreased density volume of hepatocytes and hepatic fibrosis. In conclusion, our findings indicate that treatment with PZQ ameliorates hepatic schistosomiasis pathology even in mice fed a low-protein diet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A low-protein diet leads to functional and structural pancreatic islet alterations, including islet hypotrophy. Insulin-signaling pathways are involved in several adaptive responses by pancreatic islets. We determined the levels of some insulin-signaling proteins related to pancreatic islet function and growth in malnourished rats. Adult male Wistar rats (N = 20 per group) were fed a 17% protein (normal-protein diet; NP) or 6% protein (low-protein diet; LP), for 8 weeks. At the end of this period, blood glucose and serum insulin and albumin levels were measured. The morphometric parameters of the endocrine pancreas and the content of some proteins in islet lysates were determined. The β-cell mass was significantly reduced (≅65%) in normoglycemic but hypoinsulinemic LP rats compared to NP rats. Associated with these alterations, a significant 30% reduction in insulin receptor substrate-1 and a 70% increase in insulin receptor substrate-2 protein content were observed in LP islets compared to NP islets. The phosphorylated serine-threonine protein kinase (pAkt)/Akt protein ratio was similar in LP and NP islets. The phosphorylated forkhead-O1 (pFoxO1)/FoxO1 protein ratio was decreased by 43% in LP islets compared to NP islets (P < 0.05). Finally, the ratio of phosphorylated-extracellular signal-related kinase 1/2 (pErk1/2) to total Erk1/2 protein levels was decreased by 71% in LP islets compared to NP islets (P < 0.05). Therefore, the reduced β-cell mass observed in LP rats is associated with the reduction of phosphorylation in mitogenic-related signals, FoxO1 and Erk proteins. The cause/effect basis of this association remains to be determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clinically relevant animal models capable of simulating traumatic hemorrhagic shock are needed. We developed a hemorrhagic shock model with male New Zealand rabbits (2200-2800 g, 60-70 days old) that simulates the pre-hospital and acute care of a penetrating trauma victim in an urban scenario using current resuscitation strategies. A laparotomy was performed to reproduce tissue trauma and an aortic injury was created using a standardized single puncture to the left side of the infrarenal aorta to induce hemorrhagic shock similar to a penetrating mechanism. A 15-min interval was used to simulate the arrival of pre-hospital care. Fluid resuscitation was then applied using two regimens: normotensive resuscitation to achieve baseline mean arterial blood pressure (MAP, 10 animals) and hypotensive resuscitation at 60% of baseline MAP (10 animals). Another 10 animals were sham operated. The total time of the experiment was 85 min, reproducing scene, transport and emergency room times. Intra-abdominal blood loss was significantly greater in animals that underwent normotensive resuscitation compared to hypotensive resuscitation (17.1 ± 2.0 vs 8.0 ± 1.5 mL/kg). Antithrombin levels decreased significantly in normotensive resuscitated animals compared to baseline (102 ± 2.0 vs 59 ± 4.1%), sham (95 ± 2.8 vs 59 ± 4.1%), and hypotensive resuscitated animals (98 ± 7.8 vs 59 ± 4.1%). Evidence of re-bleeding was also noted in the normotensive resuscitation group. A hypotensive resuscitation regimen resulted in decreased blood loss in a clinically relevant small animal model capable of reproducing hemorrhagic shock caused by a penetrating mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intestinal lymph pathway plays an important role in the pathogenesis of organ injury following superior mesenteric artery occlusion (SMAO) shock. We hypothesized that mesenteric lymph reperfusion (MLR) is a major cause of spleen injury after SMAO shock. To test this hypothesis, SMAO shock was induced in Wistar rats by clamping the superior mesenteric artery (SMA) for 1 h, followed by reperfusion for 2 h. Similarly, MLR was performed by clamping the mesenteric lymph duct (MLD) for 1 h, followed by reperfusion for 2 h. In the MLR+SMAO group rats, both the SMA and MLD were clamped and then released for reperfusion for 2 h. SMAO shock alone elicited: 1) splenic structure injury, 2) increased levels of malondialdehyde, nitric oxide (NO), intercellular adhesion molecule-1, endotoxin, lipopolysaccharide receptor (CD14), lipopolysaccharide-binding protein, and tumor necrosis factor-α, 3) enhanced activities of NO synthase and myeloperoxidase, and 4) decreased activities of superoxide dismutase and ATPase. MLR following SMAO shock further aggravated these deleterious effects. We conclude that MLR exacerbates spleen injury caused by SMAO shock, which itself is associated with oxidative stress, excessive release of NO, recruitment of polymorphonuclear neutrophils, endotoxin translocation, and enhanced inflammatory responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different concentrations of basil essential oil (Ocimum basilicum L.) (0.19; 0.38; 0.75; 1.87; 3.75 and 6.00 mg.g-1) were evaluated in relation to their antioxidant activity using the DPPH● radical methodology. From the IC50 obtained data, the concentrations of 0.19; 0.38; 0.75; 1.87; 3.75; 6.00 and 12.00 mg.mL-1 were applied directly to the product and these were sensorially evaluated by the test of control difference. The concentrations related to the highest acceptability (0.19; 0.38 and 0.75 mg.g-1) were tested for antioxidant activity in the internal part of Italian type salami - during the processing and after 30 days of storage, in terms of lipid and protein oxidation. The oxidation of lipids was determined using the method of TBARS. The method of carbonyl compounds was employed for proteins oxidation. Five different formulations of salami were elaborated: blank (without the use of antioxidant); control (using sodium eritorbate as antioxidant); and adding 0.19; 0.38 and 0.75 mg.g-1 of basil essential oil. The product was kept between 25 ºC and 18 ºC and UR between 95% and 70%, for 28 days. Analyses were carried out on the processing day and after 2, 7, 14, 21 and 28 days, and also following 30 days of storage. The basil essential oil in vitro presented an antioxidant activity of IC50 12 mg.mL-1. In the internal part of the Italian type salami the commercial antioxidant (control) and the formulation containing 0.75 mg.g-1 of basil essential oil presented antioxidant activity in relation to the lipids, but not to the proteins - during processing and storage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chenopodium quinoa seeds have high protein content. The nutritional value of quinoa is superior compared with traditional cereals. Its essential amino acid composition is considered next to the ideal, and its quality matches that of milk proteins. In this study, the seed storage proteins from Chenopodium quinoa were extracted, fractionated, partially purified, and characterized. The structural characterization was performed by Tricine-SDS-PAGE and two-dimensional electrophoresis, and it confirmed the presence of proteins of molecular weight of 30 and 7kDa, probably corresponding to lectins and trypsin inhibitors, respectively. The functional characterization of these proteins evidenced their activity as antinutritional factors due to their in vitro digestibility. Quinoa proteins have an excellent amino acid composition with many essential amino acids. In vitro digestibility evaluation indicated that heat-treated samples showed a more complete digestion than the native state samples. Quinoa seeds can be an important cereal in human diet after adequate heat treatment.