233 resultados para Disease Vectors
Resumo:
During the last twenty years, several adults of Triatoma tibiamaculata infected with Trypanosoma cruzi have been spontaneously caught by inhabitants, inside their houses in the new habitational district of Pituaçu of Salvador, Bahia. In this communication the authors call attention to the necessity of studies about the possibility of occurrence of new human cases of Chagas disease, to clarify the obscure origin of some positive blood donors in Salvador.
Resumo:
We investigated the efficacy and the residual effect of fipronil® against two species of triatomine bugs, Triatoma infestans and Rhodnius neglectus, in laboratory conditions measuring concentration-response and residual activity on different surfaces (dried mud and lime coated mud). Lethal concentrations (LC50,90) were determined on filter paper. The higher insecticide efficacy against R. neglectus when compared to T. infestans may be partially attributed to the differences in their biological cycles and genetic structures. Comparison with lambdacyhalothrin wettable powder showed that fipronil mortality rates (above 50%) were observed on mud blocks and lime-coated mud blocks up to 3 months when fipronil was sprayed at 100 and 200 mg a.i./m². Residual effect deeply decayed after 3 months; and at 6 months post treatment mortality was not observed. In contrast, lambdacyhalothrin showed a long lasting residual effect on both surfaces up to 6 months. Also, it should be mentioned that fipronil had a slow, but lethal activity on the triatomine bugs when wettable formulations were used on porous surfaces.
Resumo:
Artificial ecotopes of 121 peridomiciliary environments in four rural localities in the state of Ceará, Brazil, were studied and the type of material of the ecotopes was identified as triatomine infestation. Two thousand two hundred and four Triatoma brasiliensis Neiva, 340 Triatoma pseudomaculata Corrêa and Espínola, 121 Rhodnius nasutus Stall, and 5 Panstrongylus lutzi (Neiva and Pinto) were captured. Out of the 323 ecotopes found (X =2.0 ± 1.8 per dwelling) such as pigpens, henhouses, corrals, perches, dovecotes, piles of roofing tiles, bricks, wood, and straw 30.3% were infested by triatomines in all different developmental stages, including eggs. A substantial number of triatomines were found in perches, however the largest infestation took place in roofing materials used in the construction of goat/sheep corrals, henhouses, and pigpens, where 98% of them were captured: 1372 triatomines were located in the roofing tile covers, 285 in the straw, 187 in the perches, 77 in the coverings of roofing tiles and straw, and 13 in the straw and wood. Among all the different pile of materials, roofing tiles were the most infested (50%) followed by bricks (38.9%) and woods (36.1%). T. brasiliensis colonized mainly brick piles (chi2=16.539; p < 0.05) and roofing tiles (chi2=5,090.58; p < 0.05); T. pseudomaculata preferred wood perches (chi2= 472.39; p < 0.05) and woodpiles (chi2=126.0 p < 0.05), and R. nasutus was principally found in roofing straw (chi2=384.43; p < 0.05). These findings suggest that triatomines tend to colonize peridomiciliary ecotopes similar to their original habitats.
Resumo:
Certifying the absence of Chagas disease transmission by native vectors lacks scientific grounds and weakens long-term control-surveillance systems to the detriment of people living under risk conditions. Instead, a regular "certification of good practice" (including vector control-surveillance, case detection/patient care and blood safety) could help achieve sustained disease control.
Resumo:
Nine species of Triatominae, representing three tribes and five genera, are currently known in Suriname. An annotated list of the species based on the collections of the Bureau of Public Health (Suriname), the National Zoological Collection Suriname and the National History Museum Leiden (the Netherlands) is provided. Additionally, the results of several years of opportunistic collection in two domestic environments are presented. The most common species are Rhodnius pictipes Stål, 1972, Rhodnius robustus Larrouse, 1972 and Panstrongylus geniculatus (Latreille, 1811). The significance of the species as vectors of Chagas disease in Suriname is discussed.
Resumo:
As an evaluation scheme, we propose certifying for “control”, as alternative to “interruption”, of Chagas disease transmission by native vectors, to project a more achievable and measurable goal and sharing good practices through an “open online platform” rather than “formal certification” to make the key knowledge more accumulable and accessible.
Resumo:
This review deals with transmission ofTrypanosoma cruziby the most important domestic vectors, blood transfusion and oral intake. Among the vectors,Triatoma infestans,Panstrongylus megistus, Rhodnius prolixus,Triatoma dimidiata, Triatoma brasiliensis,Triatoma pseudomaculata, Triatoma sordida,Triatoma maculata, Panstrongylus geniculatus,Rhodnius ecuadoriensis and Rhodnius pallescens can be highlighted. Transmission of Chagas infection, which has been brought under control in some countries in South and Central America, remains a great challenge, particularly considering that many endemic countries do not have control over blood donors. Even more concerning is the case of non-endemic countries that receive thousands of migrants from endemic areas that carry Chagas disease, such as the United States of America, in North America, Spain, in Europe, Japan, in Asia, and Australia, in Oceania. In the Brazilian Amazon Region, since Shaw et al. (1969) described the first acute cases of the disease caused by oral transmission, hundreds of acute cases of the disease due to oral transmission have been described in that region, which is today considered to be endemic for oral transmission. Several other outbreaks of acute Chagas disease by oral transmission have been described in different states of Brazil and in other South American countries.
Resumo:
The reaction of nine vector species of Chagas' disease to infection by seven different Trypanosoma cruzi strains; Berenice, Y, FL, CL, S. Felipe, Colombiana and Gávea, are examined and compared. On the basis of the insects' ability to establish and maintain the infection, vector species could be divided into two distinct groups which differ in their reaction to an acute infection by T. cruzi. While the proportion of positive bugs was found to be low in Triatoma infestans and Triatoma dimidiata it was high, ranging from 96.9% to 100% in the group of wild (Rhodnius neglectus, Triatoma rubrovaria)and essentially sylvatic vectors in process of adaptation to human dwellings, maintained under control following successful insecticidal elimination of Triatoma infestans (Panstrongylus megistus, Triatoma sordida and Triatoma pseudomaculata). An intermediate position is held by Triatoma brasiliensis and Rhodnius prolixus. This latter has been found to interchange between domestic and sylvatic environments. The most important finding is the strikingly good reaction between each species of the sylvatic bugs and practically all T. cruzi strains herein studied, thus indicating that the factors responsible for the excellent reaction of P.megistus to infection by Y strain, as previously reported also come into operation in the reaction of the same vector species to acute infections by five of the remaining T.cruzi strains. Comparison or data reported by other investigators with those herein described form the basis of the discussion of Dipetalogaster maximus as regards its superiority as a xenodiagnostic agent.
Resumo:
Previous studies (1982,1987) have emphasized the superiority of sylvatic vector species over domestic species as xenodiagnostic agents in testing hosts with acute or chronic infections by T. cruzi "Y" stock. The present study, which is unique in that it contains data on both infectivity rates produced by the same stock in 11 different vector species and also the reaction of the same vector species to seven different parasite stocks, establishes the general validity of linking efficiency of xenodiagnosis to the biotope of its agent. For example, infectivity rates produced by "São Felipe" stock varied from 82.5% to 98.3% in sylvatic vectors but decreased to 42.5% to 71.3% in domestic species. "Colombiana" stock produced in the same sylvatic vectors infectivity rates ranging from 12.5% to 45%. These shrank to 5%-22.5% in domestic bugs. The functional role of the biotope in the vector-parasite interaction has not been eluddated. But since this phenomenon has been observed to be stable and easy to reproduce, it leads us to believe that the results obtained are valid. Data presented also provide increasing evidence that the infectivity rates exhibited by bugs from xenodiagnosis in chronic hosts, are parasite stock specific. For example, infectivity rates produced by "Berenice", "Y", "FL" and "CL" varied in R. neglectus from 26.3% to 75%; in P. megistus from 56.3% to 83.8%; in T. sordida from 28.8% to 58.8% in T. pseudomaculata from 41.3% to 66.3% and in T. rubrovaria from 48.8% to 85%. Data from xenodiagnosis in the same hosts, carrying acute infections by the same parasite stocks, gave the five sylvatic vectors a positive rating of approximately 100%, thus suggesting that the heavy loads of parasites circulating in the acute hosts obscured the characteristic interspecific differences for the parasite stock. Nonetheless these latter were revealed in the same hosts with chronic infections stimulated by very low numbers of the same parasite stocks. Certain observations here described lead us to speculate as to the possibility of further results from other parasite stocks, allowing the association of the infectivity rates produced in bugs by different parasite stocks with the isoenzymic patterns revealed by these stocks.
Resumo:
INTRODUCTION: A descriptive, entomological and seroepidemiological study on Chagas disease was conducted in a place of recent occupation on the outskirts of Cochabamba, Bolivia: Avaroa/Primer de Mayo (population:3,000), where the socio-economic level is low and no control measures have been made available. METHODS: The immunofluorescent antibody test (IFAT) was used for IgG and IgM anti-Trypanosoma cruzi antibodies in filter paper bloodspot eluates from 128 subjects (73 females, 55 males) selected by systematic sampling. Concerning each subject age, gender, birthplace, occupation, duration of residence and building materials used in their houses were recorded. Vectors were captured both in domestic and peridomestic environments. RESULTS: Seropositive, 12.5% (16/128): females, 15.1% (11/73); males, 9.1% (5/55). Average time of residence: 6.1 years for the whole population sample and 7.4 years for the seropositive subjects. Most houses had adobe walls (76.7% , n= 30), galvanized iron rooves (86.7%) and earthen floors (53.4%) 80% of the walls had crevices. One hundred forty seven specimens of Triatoma infestans were captured, of which 104 (70.7%) were domestic, and 1 peridomestic Triatoma sordida. Precipitin host identification: birds, 67.5%; humans, 27.8%; rodents, 11.9%; dogs, 8.7%; cats, 1.6%. House infestation and density indices were 53.3 and 493.0 respectively. We found 21 (14.3%) specimens of T. infestans infected with trypanosomes, 18 (85.7%) of which in domestic environments. DISCUSSION: The elements for the vector transmission of Chagas disease are present in Avaroa/Primer de Mayo and the ancient custom of keeping guinea pigs indoors adds to the risk of human infection. In neighboring Cochabamba, due to substandard quality control, contaminated blood transfusions are not infrequent, which further aggravates the spread of Chagas disease. Prompt action to check the transmission of this infection, involving additionally the congenital and transfusional modes of acquisition, is required.
Resumo:
OBJECTIVE: To study the risk of Trypanosoma cruzi domestic transmission using an entomological index and to explore its relationship with household's characteristics and cultural aspects. METHODS: There were studied 158 households in an endemic area in Argentina. Each household was classified according to an entomological risk indicator (number of risky bites/human). A questionnaire was administered to evaluate risk factors among householders. RESULTS: Infested households showed a wide range of risk values (0 to 5 risky bites/human) with skewed distribution, a high frequency of lower values and few very high risk households. Of all collected Triatoma infestans, 44% had had human blood meals whereas 27% had had dogs or chickens blood meals. Having dogs and birds sharing room with humans increased the risk values. Tidy clean households had contributed significantly to lower risk values as a result of low vector density. The infested households showed a 24.3% correlation between time after insecticide application and the number of vectors. But there was no correlation between the time after insecticide application and T. infestans' infectivity. The statistical analysis showed a high correlation between current values of the entomological risk indicator and Trypanosoma cruzi seroprevalence in children. CONCLUSIONS: The risk of T. cruzi domestic transmission assessed using an entomological index show a correlation with children seroprevalence for Chagas' disease and householders' habits.
Resumo:
At least eighteen species of triatominae have been found in the Brazilian Amazon, nine of them naturally infected with Trypanosoma cruzi or "cruzi-like" trypanosomes and associated with numerous wild reservoirs. Despite the small number of human cases of Chagas' disease described to date in the Brazilian Amazon the risk that the disease will become endemic in this area is increasing for the following reasons: a) uncontrolled deforestation and colonization altering the ecological balance between reservoir hosts and wild vectors; b) the adaptation of reservoir hosts of T.cruzi and wild vectors to peripheral and intradomiciliary areas, as the sole feeding alternative; c) migration of infected human population from endemic areas, accompanied by domestic reservoir hosts (dogs and cats) or accidentally carrying in their baggage vectors already adapted to the domestic habitat. In short, risks that Chagas' disease will become endemic to the Amazon appear to be linked to the transposition of the wild cycle to the domestic cycle in that area or to transfer of the domestic cycle from endemic areas to the Amazon.
Resumo:
Human bartonellosis is found predominantly in Perú2, 6, 8, 12, 15, as well as in Ecuador3, 7, 10 and Colombia13, 15. In Peru, the disease is restricted to the valleys of the western-side and a few inter-andean and eastern-slopes of the andean valleys6, 15, 18 at altitudes between 1000 and 3200 masl. Most human cases are reported from the regions of Chavin, Nor Oriental del Marañon and Lima16. Lutzomyia verrucarum is presumed to be the only vector of human bartonellosis in the valleys of Peru1, 2, 8, 11, 17, 19/ Our research objetive was to detect the presence of Lu. verrucarum in various localities known to be endemic for human bartonellosis in three provinces of Region Nor Oriental del Marañon. Sandfly collections were made between 1987 and 1992 during four visits to bartonellosis-endemic provinces: San Ignacio (districts of San José de Lourdes: 1020-1260 m and La Coipa: 1200-1560 m), Jaén (districts of Santa Rosa: 1300-1680 m and Jaén: 1220-1680 m) and Utcubamba (districts of Lonya Grande: 1200 m and El Milagro: 1200-1540 m)
Resumo:
Oral transmission of Trypanosoma cruzi has been suspected when epidemic episodes of acute infection were observed in areas devoid of domiciled insect vectors. Considering that the distribution of T. cruzi biodemes differs in sylvatic and domestic cycles, results of studies on biodemes can be of interest regarding oral transmission. The infectivity of T. cruzi strains of different biodemes was tested in mice subjected to infection by the digestive route (gavage). Swiss mice were infected either with the Peruvian strain (Biodeme Type I, Z2b) or the Colombian strain (Biodeme Type III, Z1, or T. cruzi I); for control, intraperitoneal inoculation was performed in a group of mice. The Colombian strain revealed a similar high infectivity and pathogenicity when either route of infection was used. However, the Peruvian strain showed contrasting levels of infectivity and pathogenicity, being high by intraperitoneal inoculation and low when the gastric route was used. The higher infectivity of the Colombian strain (Biodeme Type III) by gastric inoculation is in keeping with its role in the epidemic episodes of acute Chagas disease registered in the literature, since strains belonging to Biodeme III are most often found in sylvatic hosts.
Resumo:
Trypanosoma rangeli is non pathogenic for humans but of important medical and epidemiological interest because it shares vertebrate hosts, insect vectors, reservoirs and geographic areas with T. cruzi, the etiological agent of Chagas disease. Therefore, in this work, we set up two PCR reactions, TcH2AF/R and TrFR2, to distinguish T. cruzi from T. rangeli in mixed infections of vectors based on amplification of the histone H2A/SIRE and the small nucleolar RNA Cl1 genes, respectively. Both PCRs were able to appropriately detect all T. cruzi or T. rangeli experimentally infected-triatomines, as well as the S35/S36 PCR which amplifies the variable region of minicircle kDNA of T. cruzi. In mixed infections, whereas T. cruzi DNA was amplified in 100% of samples with TcH2AF/R and S35/S36 PCRs, T. rangeli was detected in 71% with TrF/R2 and in 6% with S35/S36. In a group of Rhodnius colombiensis collected from Coyaima (Colombia), T. cruzi was identified in 100% with both PCRs and T. rangeli in 14% with TrF/R2 and 10% with S35/S36 PCR. These results show that TcH2AF/R and TrF/R2 PCRs which are capable of recognizing all T. cruzi and T. rangeli strains and lineages could be useful for diagnosis as well as for epidemiological field studies of T. cruzi and T. rangeli vector infections.