75 resultados para Dirichlet heat kernel estimates
Resumo:
Individuals with systemic arterial hypertension have a higher risk of heat-related complications. Thus, the aim of this study was to examine the thermoregulatory responses of hypertensive subjects during recovery from moderate-intensity exercise performed in the heat. A total of eight essential hypertensive (H) and eight normotensive (N) male subjects (age=46.5±1.3 and 45.6±1.4 years, body mass index=25.8±0.8 and 25.6±0.6 kg/m2, mean arterial pressure=98.0±2.8 and 86.0±2.3 mmHg, respectively) rested for 30 min, performed 1 h of treadmill exercise at 50% of maximal oxygen consumption, and rested for 1 h after exercise in an environmental chamber at 38°C and 60% relative humidity. Skin and core temperatures were measured to calculate heat exchange parameters. Mean arterial pressure was higher in the hypertensive than in the normotensive subjects throughout the experiment (P<0.05, unpaired t-test). The hypertensive subjects stored less heat (H=-24.23±3.99 W·m−2vs N=-13.63±2.24 W·m−2, P=0.03, unpaired t-test), experienced greater variations in body temperature (H=-0.62±0.05°C vsN=-0.35±0.12°C, P=0.03, unpaired t-test), and had more evaporated sweat (H=-106.1±4.59 W·m−2vs N=-91.15±3.24 W·m−2, P=0.01, unpaired t-test) than the normotensive subjects during the period of recovery from exercise. In conclusion, essential hypertensive subjects showed greater sweat evaporation and increased heat dissipation and body cooling relative to normotensive subjects during recovery from moderate-intensity exercise performed in hot conditions.
Resumo:
Hypertension is characterized by a pro-inflammatory status, including redox imbalance and increased levels of pro-inflammatory cytokines, which may be exacerbated after heat exposure. However, the effects of heat exposure, specifically in individuals with inflammatory chronic diseases such as hypertension, are complex and not well understood. This study compared the effects of heat exposure on plasma cytokine levels and redox status parameters in 8 hypertensive (H) and 8 normotensive (N) subjects (age: 46.5±1.3 and 45.6±1.4 years old, body mass index: 25.8±0.8 and 25.6±0.6 kg/m2, mean arterial pressure: 98.0±2.8 and 86.0±2.3 mmHg, respectively). They remained at rest in a sitting position for 10 min in a thermoneutral environment (22°C) followed by 30 min in a heated environmental chamber (38°C and 60% relative humidity). Blood samples were collected before and after heat exposure. Plasma cytokine levels were measured using sandwich ELISA kits. Plasma redox status was determined by thiobarbituric acid reactive substances (TBARS) levels and ferric reducing ability of plasma (FRAP). Hypertensive subjects showed higher plasma levels of IL-10 at baseline (P<0.05), although levels of this cytokine were similar between groups after heat exposure. Moreover, after heat exposure, hypertensive individuals showed higher plasma levels of soluble TNF receptor (sTNFR1) and lower TBARS (P<0.01) and FRAP (P<0.05) levels. Controlled hypertensive subjects, who use angiotensin-converting-enzyme inhibitor (ACE inhibitors), present an anti-inflammatory status and balanced redox status. Nevertheless, exposure to a heat stress condition seems to cause an imbalance in the redox status and an unregulated inflammatory response.
Resumo:
Defatted Brazil nut kernel flour, a rich source of high quality proteins, is presently being utilized in the formulation of animal feeds. One of the possible ways to improve its utilization for human consumption is through improvement in its functional properties. In the present study, changes in some of the functional properties of Brazil nut kernel globulin were evaluated after acetylation at 58.6, 66.2 and 75.3% levels. The solubility of acetylated globulin was improved above pH 6.0 but was reduced in the pH range of 3.0-4.0. Water and oil absorption capacity, as well as the viscosity increased with increase in the level of acetylation. Level of modification also influenced the emulsifying capacity: decreased at pH 3.0, but increased at pH 7.0 and 9.0. Highest emulsion activity (approximately 62.2%) was observed at pH 3.0 followed by pH 9.0 and pH 7.0 and least (about 11.8%) at pH 5.0. Emulsion stability also followed similar behavior as that of emulsion activity.
Resumo:
Protein characterization and results of proximate composition and mineral analyses of fruit kernels of bocaiuva, Acrocomia aculeata (Jacq.) Lodd., are reported. The kernels presented high contents of oil (51.7%), protein (17.6%) and fiber (15.8%). The seeds´ soluble proteins were isolated according to their solubility. The main separated proteins were globulins (53.5%) and glutelins (40.0%). Moreover, the presence of low molecular mass proteases in these two fractions was shown by the SDS-PAGE method. The assays of protease-inhibitory and hemagglutinating activities showed that bocaiuva´s protein fractions were not resistant to trypsin or chymotrypsin activities and that both had low lectin content. The globulin in vitro digestibility assay resembled a casein standard. Neither globulin nor glutelin enzymatic hydrolyses increased significantly (p < 0.05) after heat treatment. Threonine and lysine are the most limiting amino acids, respectively from two major protein fractions of the bocaiuva kernel, globulin (47.1% amino acid score) and glutelin (49.5% amino acid score), in terms of the theoretical profiles for children in the age range of 2 to 5 years recommended by the FAO/WHO. Bocaiuva kernels are found to be rich in calcium, phosphorus and manganese compared to some fruit nuts such as cashew and coconut.
Resumo:
The determination of the sterilization value for low acid foods in retorts includes a critical evaluation of the factory's facilities and utilities, validation of the heat processing equipment (by heat distribution assays), and finally heat penetration assays with the product. The intensity of the heat process applied to the food can be expressed by the Fo value (sterilization value, in minutes, at a reference temperature of 121.1 °C, and a thermal index, z, of 10 °C, for Clostridium botulinum spores). For safety reasons, the lowest value for Fo is frequently adopted, being obtained in heat penetration assays as indicative of the minimum process intensity applied. This lowest Fo value should always be higher than the minimum Fo recommended for the food in question. However, the use of the Fo value for the coldest can fail to statistically explain all the practical occurrences in food heat treatment processes. Thus, as a result of intense experimental work, we aimed to develop a new focus to determine the lowest Fo value, which we renamed the critical Fo. The critical Fo is based on a statistical model for the interpretation of the results of heat penetration assays in packages, and it depends not only on the Fo values found at the coldest point of the package and the coldest point of the equipment, but also on the size of the batch of packages processed in the retort, the total processing time in the retort, and the time between CIPs of the retort. In the present study, we tried to explore the results of physical measurements used in the validation of food heat processes. Three examples of calculations were prepared to illustrate the methodology developed and to introduce the concept of critical Fo for the processing of canned food.
Resumo:
The sorption behavior of dry products is generally affected by the drying method. The sorption isotherms are useful to determine and compare thermodynamic properties of passion fruit pulp powder processed by different drying methods. The objective of this study is to analyze the effects of different drying methods on the sorption properties of passion fruit pulp powder. Passion fruit pulp powder was dehydrated using different dryers: vacuum, spray dryer, vibro-fluidized, and freeze dryer. The moisture equilibrium data of Passion Fruit Pulp (PFP) powders with 55% of maltodextrin (MD) were determined at 20, 30, 40 and 50 ºC. The behavior of the curves was type III, according to Brunauer's classification, and the GAB model was fitted to the experimental equilibrium data. The equilibrium moisture contents of the samples were little affected by temperature variation. The spray dryer provides a dry product with higher adsorption capacity than that of the other methods. The vibro-fluidized bed drying showed higher adsorption capacity than that of vacuum and freeze drying. The vacuum and freeze drying presented the same adsorption capacity. The isosteric heats of sorption were found to decrease with increasing moisture content. Considering the effect of drying methods, the highest isosteric heat of sorption was observed for powders produced by spray drying, whereas powders obtained by vacuum and freeze drying showed the lowest isosteric heats of sorption.
Resumo:
Umbu pulp is an important product in the economy of the northeastern region of Brazil, and its preservation can be ensured by heat treatment. A complete factorial design with 2 factors (time and temperature) and 3 central points was used to verify the effect of the HTST process on the physicochemical, chemical, physical, microbiological, and sensory qualities of umbu pulps. The results showed that the heat treatments applied resulted in products without significant alterations on the physicochemical, chemical, and microbiological characteristics. With respect to color, the parameters L and a* were altered by increases in temperature indicating by darkening of color. The sensory evaluation indicated that a treatment of 88 °C for 10 seconds was the best processing condition due to the greater similarity of the resulting product to the reference sample (blanched pulp).
Resumo:
This study assesses the storage temperature effect on the anthocyanins of pasteurized and unpasteurized açaí pulp. The data was obtained using a pasteurized and lyophilized pulp (PLP) to evaluate the temperature effect (0, 25, and 40 °C). Part of non-pasteurized frozen pulp (NPP) was pasteurized (NPP-P) at 90 °C for 30 seconds; both pulps were stored at 40 °C. The anthocyanin content reduction in the drink was evaluated from the half-life time (t1/2), activation energy (Ea), temperature quotient (Q10), and the reaction rate constant (k). The t1/2 of the PLP anthocyanins stored at 40 °C was 1.8 times less than that stored at 25 °C and 15 times less than that stored at 0 °C; therefore, the higher temperatures decreased the stability of anthocyanins. The pasteurization increased the t1/2 by 6.6 times (10.14 hours for NPP and 67.28 hours for NPP-P). The anthocyanin degradation on NPP-P followed a first order kinetic, while NPP followed a second order kinetic; thus it can be said that the pasteurization process can improve the preservation of anthocyanins in the pulp.
Resumo:
Rice bran is a byproduct commonly used for animal feeding; however its nutritional value and potential application in human diet have attracted market interest. Its preservation for safe use is still a challenge, so the objective of this study was to determine the quality of commercially available rice bran samples subjected to different heat treatments (extruding, parboiling, toasting, and microwave oven heating) in order to promote stabilization during storage under room temperature. Rice bran samples were collected from two industries, and each treatment was divided in three parts, each corresponding to three repetitions. All samples were evaluated for moisture content, total microorganisms, mold and yeast counting, hydrolytic rancidity, and lipase activity during 90 days of storage. Most of the heat treatments, including domestic and thermoplastic extrusion, generated products which may be used for human consumption under the tested conditions in terms of physicochemical and microbiological quality. The domestic treatments were more efficient in eliminating microorganisms or keeping them within acceptable limits. The toasted rice bran showed satisfactory results in terms of moisture, hydrolytic rancidity control, and lipase activity.
Resumo:
The purpose of this study was to investigate and model the water absorption process by corn kernels with different levels of mechanical damage Corn kernels of AG 1510 variety with moisture content of 14.2 (% d.b.) were used. Different mechanical damage levels were indirectly evaluated by electrical conductivity measurements. The absorption process was based on the industrial corn wet milling process, in which the product was soaked with a 0.2% sulfur dioxide (SO2) solution and 0.55% lactic acid (C3H6O3) in distilled water, under controlled temperatures of 40, 50, 60, and 70 ºC and different mechanical damage levels. The Peleg model was used for the analysis and modeling of water absorption process. The conclusion is that the structural changes caused by the mechanical damage to the corn kernels influenced the initial rates of water absorption, which were higher for the most damaged kernels, and they also changed the equilibrium moisture contents of the kernels. The Peleg model was well adjusted to the experimental data presenting satisfactory values for the analyzed statistic parameters for all temperatures regardless of the damage level of the corn kernels.
Resumo:
The soybean is a protein source of high biological value. However, the presence of anti-nutritional factors affects its protein quality and limits the bioavailability of other nutrients. The effect of heat-treatment, 150 ºC for 30 minutes, on hulled and hull-less soybean flour from the cultivar UFVTN 105AP on urease, trypsin inhibitor activity, protein solubility, amino acid profile, and in vivo protein quality was investigated. The treatment reduced the trypsin inhibitor activity and urease, but it did not affect protein solubility. Protein Efficiency Coefficient (PER) values of the flours were similar, and the PER of the hull-less soybean flour did not differ from casein. The Net Protein Ratio (NPR) did not differ between the experimental groups. The True Digestibility (TD) of the flours did not differ, but both were lower in casein and the Protein Digestibility Corrected Amino Acid Score (PDCCAS) was lower than the TD, due to limited valine determined by the chemical score. Therefore, the flours showed reduced anti-nutritional phytochemicals and similar protein quality, and therefore the whole flours can be used as a source of high quality protein.
Resumo:
Solid lipid particles have been investigated by food researchers due to their ability to enhance the incorporation and bioavailability of lipophilic bioactives in aqueous formulations. The objectives of this study were to evaluate the physicochemical stability and digestibility of lipid microparticles produced with tristearin and palm kernel oil. The motivation for conducting this study was the fact that mixing lipids can prevent the expulsion of the bioactive from the lipid core and enhance the digestibility of lipid structures. The lipid microparticles containing different palm kernel oil contents were stable after 60 days of storage according to the particle size and zeta potential data. Their calorimetric behavior indicated that they were composed of a very heterogeneous lipid matrix. Lipid microparticles were stable under various conditions of ionic strength, sugar concentration, temperature, and pH. Digestibility assays indicated no differences in the release of free fatty acids, which was approximately 30% in all analises. The in vitro digestibility tests showed that the amount of palm kernel in the particles did not affect the percentage of lipolysis, probably due to the high amount of surfactants used and/or the solid state of the microparticles.
Resumo:
Chenopodium quinoa seeds have high protein content. The nutritional value of quinoa is superior compared with traditional cereals. Its essential amino acid composition is considered next to the ideal, and its quality matches that of milk proteins. In this study, the seed storage proteins from Chenopodium quinoa were extracted, fractionated, partially purified, and characterized. The structural characterization was performed by Tricine-SDS-PAGE and two-dimensional electrophoresis, and it confirmed the presence of proteins of molecular weight of 30 and 7kDa, probably corresponding to lectins and trypsin inhibitors, respectively. The functional characterization of these proteins evidenced their activity as antinutritional factors due to their in vitro digestibility. Quinoa proteins have an excellent amino acid composition with many essential amino acids. In vitro digestibility evaluation indicated that heat-treated samples showed a more complete digestion than the native state samples. Quinoa seeds can be an important cereal in human diet after adequate heat treatment.
Resumo:
AbstractThe aim of this study was to analyze the impact that heat treatment with salts and freezing processes on the sensory, instrumental, and physico-chemical characteristics of fried potatoes of the Monalisa cultivar. The potatoes were blanched in distilled water (P); sodium chloride solution (B1); calcium chloride solution (B2), and a solution with both of these salts (B3). They were then pre-cooked and frozen for 24 hours and for 30 days. After frying, sensory characteristics were analyzed (color, texture, flavor, oiliness), along with overall preference and instrumental determinations of texture, color, and oil content. Further tests were conducted on the sample with the best results in the sensory analysis (B1), along with sample P as a control, to determine granule microstructure, carbohydrate fractions, glycemic index, and glycemic load. Blanching B3, despite reducing oil absorption and providing less oiliness, obtained lesser overall preference. Freezing for 30 days increased the lightness, except for when sodium chloride was used, which intensified the color yellow. The use of sodium chloride did not interfere with the type of starch granules, nor with the formation of resistant starch; however, longer freezing time reduced the glycemic index and concentrated the dietary fiber content. All samples exhibited low glycemic index and moderate glycemic loads.
Resumo:
The moisture content of peanut kernel (Arachis hypogaea L.) at digging ranges from 30 to 50% on a wet basis (w.b.). The seed moisture content must be reduced to 10.5% or below before seeds can be graded and marketed. After digging, peanuts are cured on a window sill for two to five days then mechanically separated from the vine. Heated air is used to further dry the peanuts from approximately 18 to 10% moisture content w.b. Drying is required to maintain peanut seed and grain quality. Traditional dryers pass a high temperature and high humidity air stream through the seed mass. The drying time is long because the system is inefficient and the high temperature increases the risk of thermal damage to the kernels. New technology identified as heat pipe technology (HPT) is available and has the unique feature of removing the moisture from the air stream before it is heated and passed through the seed. A study was conducted to evaluate the performance of the HPT system in drying peanut seed. The seeds inside the shells were dried from 17.4 to 7.3% in 14 hours and 11 minutes, with a rate of moisture removal of 0.71% mc per hour. This drying process caused no reduction in seed quality as measured by the standard germination, accelerated ageing and field emergence tests. It was concluded that the HPT system is a promising technology for drying peanut seed when efficiency and maintenance of physiological quality are desired.