72 resultados para Dairy product
Resumo:
Face ao aumento de peso e ao aparecimento de doenças cardiovasculares na população mundial devido ao consumo de alimentos altamente calóricos, o desenvolvimento de alimentos com baixo ou reduzido teor de gordura torna-se essencial. Estudou-se o efeito da adição de "fat replacers" (Litesse e Dairy-lo) na vida-de-prateleira de bebidas lácteas. No presente trabalho as variáveis independentes Litesse (X1) e Dairy-lo (X2) foram empregadas nas concentrações 0,50,1,50, 2,50% em peso, com 7 combinações calculadas e 3 repetições do ponto central utilizando a metodologia de superfície resposta. As bebidas lácteas foram avaliadas através de análises químicas (valor de pH, acidez total titulável, teores de sólidos totais e tirosina) e sensoriais (aparência, sabor e consistência) aos 0, 7, 14, 21 e 28 dias de armazenamento a 5ºC. Durante a vida-de-prateleira a utilização de diferentes concentrações de Litesse e Dairy-lo não influenciou o comportamento físico-químico e a aparência das bebidas lácteas estudadas. Entretanto, o sabor foi afetado com o armazenamento. Pode-se estabelecer 28 dias como o tempo ideal para a vida-de-prateleira das bebidas lácteas estudadas. Os resultados indicam que a utilização do Litesse e Dairy-lo em formulações de bebidas lácteas é perfeitamente viável.
Resumo:
A theoretical model is used to predict the growth of Staphylococcus aureus in a pasteurized meat product kept at ambient temperatures for several hours. For this purpose, the temperature profiles of some cities of Mexico were combined with literature data on the kinetics of S. aureus growth. As shown by theoretical predictions, if the food is kept at ambient temperature, the average daily temperature may not give accurate predictions.
Resumo:
This work is aimed at evaluating the physicochemical, physical, chromatic, microbiological, and sensorial stability of a non-dairy dessert elaborated with soy, guava juice, and oligofructose for 60 days at refrigerated storage as well as to estimate its shelf life time. The titrable acidity, pH, instrumental color, water activity, ascorbic acid, and physical stability were measured. Panelists (n = 50) from the campus community used a hedonic scale to assess the acceptance, purchase intent, creaminess, flavor, taste, acidity, color, and overall appearance of the dessert during 60 days. The data showed that the parameters differed significantly (p < 0.05) from the initial time, and they could be fitted in mathematical equations with coefficient of determination above 71%, aiming to consider them suitable for prediction purposes. Creaminess and acceptance did not differ statistically in the 60-day period; taste, flavor, and acidity kept a suitable hedonic score during storage. Notwithstanding, the sample showed good physical stability against gravity and presented more than 15% of the Brazilian Daily Recommended Value of copper, iron, and ascorbic acid. The product shelf life estimation found was 79 days considering the overall acceptance, acceptance index and purchase intent.
Resumo:
This study aimed to develop sensory acceptable, high nutritional value fish crackers that could be kept at room temperature for 180 days. Minced fish of different low-value species was the raw material employed to produce two types of fish crackers: a) the traditional keropok cracker, which was expanded by deep frying; and b) a low-fat fish cracker, expanded by microwave cooking. The protein content of the fried fish crackers (FFCs) and that of the microwaved fish crackers (MFCs) were high (10.86 and 14.70%, respectively). The essential amino acid contents of the two types of fish cracker were above the FAO requirements for adults, and the lysine content was above the requirements for children. Sensory analysis, performed by adult panelists, resulted in a general level of acceptability of 90% for the MFCs and of 97% for the FFCs. Vacuum packaging maintained microbiological and physicochemical properties for a storage period of 180 days at room temperature.
Resumo:
The efficiency of four Sanitizers - peracetic acid, chlorhexidine, quaternary ammonium, and organic acids - was tested in this work using different bacteria recognized as a problem to meat industry, Salmonella sp., S. aureus, E. coli and L. monocytogenes. The effects of sanitizer concentration (0.2, 0.5, 0.6, 1.0, 1.1 and 1.4%), at different temperatures (10 and 45 °C) and contact time (2, 10, 15, 18 and 25 minutes) were evaluated. Tests in an industrial plant were also carried out considering previously obtained results. In a general way, peracetic acid presented higher efficiencies using low concentration (0.2%) and contact time (2 minutes) at 10 °C. The tests performed in industrial scale showed that peracetic acid presented a good performance in concentration and contact time lower than that suggested by the suppliers. The use of chlorhexidine and quaternary ammonium led to reasonable results at the indicated conditions, and organic acids were ineffective under concentration and contact time higher than those indicated by the suppliers in relation to Staphylococcus aureus. The results, in general, show that the choice for the most adequate sanitizer depends on the microorganism contaminant, the time available for sanitizer application, and also on the process cost.
Resumo:
It is important to understand how changes in the product formulation can modify its characteristics. Thus, the objective of this study was to investigate the effect of whey protein concentrate (WPC) on the texture of fat-free dairy desserts. The correlation between instrumental and sensory measurements was also investigated. Four formulations were prepared with different WPC concentrations (0, 1.5, 3.0, and 4.5 wt. (%)) and were evaluated using the texture profile analysis (TPA) and rheology. Thickness was evaluated by nine trained panelists. Formulations containing WPC showed higher firmness, elasticity, chewiness, and gumminess and clearly differed from the control as indicated by principal component analysis (PCA). Flow behavior was characterized as time-dependent and pseudoplastic. Formulation with 4.5% WPC at 10 °C showed the highest thixotropic behavior. Experimental data were fitted to Herschel-Bulkley model. The addition of WPC contributed to the texture of the fat-free dairy dessert. The yield stress, apparent viscosity, and perceived thickness in the dairy desserts increased with WPC concentration. The presence of WPC promotes the formation of a stronger gel structure as a result of protein-protein interactions. The correlation between instrumental parameters and thickness provided practical results for food industries.
Resumo:
Dulce de leche (DL), a dairy dessert highly appreciated in Brazil, is a concentrated product containing about 70% m/m of total solids. Thermophysical and rheological properties of two industrial Brazilian Dulce de leche formulations (classic Dulce de leche and Dulce de leche added with coconut flakes 1.5% m/m) were determined at temperatures comprised between 28.4 and 76.4 °C. In general, no significant differences (p < 0.05) were observed in the presence of coconut flakes in the two formulations. Heat capacity varied from 2633.2 to 3101.8 J/kg.°C; thermal conductivity from 0.383 to 0.452 W/m.°C; specific mass from 1350.7 to 1310.7 kg/m³; and, thermal diffusivity from (1.082 × 10-7 to 1.130 × 10-7) m²/s. The Bingham model was used to properly describe the non-Newtonian behavior of both formulations, with yielding stress values varying from 27.3 to 17.6 Pa and plastic viscosity from 19.9 to 5.9 Pa.s.
Resumo:
The study and use of natural pigments in food industries have increased in recent years due to the toxicity presented by artificial pigments. Monascus ruber is a filamentous fungus that produces red, orange, and yellow pigments under different growing conditions. The growth of health food market has increased in parallel with the growth in biofuels production, such as biodiesel, which generates a concomitant increase in the production of glycerin that can be used in bioprocesses. The objective of this study was to use glycerin and glucose as substrates in the production of natural pigments in a bioreactor. The culture of Monascus ruber was carried out in a Bioflo III reactor with 4 L of working volume and pH, temperature, aeration, and agitation control. The highest pigment production was observed after 60 hours of fungal culture with 8.28 UA510 of red pigment. The pH range remained from 5.45 to 6.23 favoring the release of red pigment in the medium. This study shows the feasibility of the production of natural pigments by Monascus ruber in a bioreactor using a co-product of biodiesel without previous treatment as a substrate.
Resumo:
Okara is a by-product generated during the manufacture of soymilk and tofu. Wet okara was added to beef burgers at 0%, 20%, and 25%. The effects of okara on certain physicochemical, textural, and sensory properties of reduced fat beef burgers were investigated. The beef burgers formulated with okara (104.0-106.0 kcal/100 g) had 60% less calories than commercial beef burgers (268.8 kcal/100 g). The texture profile analysis showed that the addition of wet okara led to a significant increase in hardness (p < 0.05) and a concomitant reduction in the values of chewiness, springiness, and cohesiveness. Lower sensory scores (p < 0.05) of flavour were observed in the beef burgers containing 25% wet okara. However, the sensory evaluation results showed that juiciness, appearance, tenderness, and overall acceptability of beef burgers formulated with okara did not differ statistically from that of the control (0% okara). Wet okara (20%) can be used as a non-meat protein source in the production of reduced-fat beef burgers without changing their sensory quality.
Resumo:
Milkborne transmission of Shiga toxin- producing Escherichia coli (STEC) has raised considerable concern due to recent outbreaks worldwide and poses a threat to public health. The aim of this study was to develop a sensitive and specific multiplex PCR assay to detect the presence of STEC in bovine raw milk. To identify E. coli (ATCC 25922) contamination, the gene uspA was used, and PCR sensitivity and specificity were accessed by testing diluted samples ranging from 2 to 2.0 × 10(6) CFU/mL. To detect STEC, the stx1 and stx2 genes were selected as targets. After reaction standardization, the multiplex assay was tested in raw milk collected from 101 cows on dairy farms. PCR assay for E. coli detection had a specificity of 100% and sensitivity of 79% (P<0.0001), with a lower detection limit of 2 CFU/mL. Multiplex PCR assay had 100% sensitivity for E. coli positive raw milk samples, and 31.1% were contaminated with STEC, 28.3% of stx2, and 1.9% of stx1. The multiplex PCR assay described in the present study can be employed to identify and screen E. coli harboring stx1 and stx2 genes in raw milk on dairy farms and in industries.
Resumo:
AbstractThe incorporation of fiber into products consumed every day by the general population is important and viable. The aim of the present work was to evaluate the impact of incorporating orange juice industry dietary fiber byproducts in fettuccini of fresh pasta. Three different fiber concentrations were added to fresh pastas (25 g/kg, 50 g/kg and 75 g/kg). The results showed a significant increase in solid loss content when the incorporation of orange fiber was greater than 50 g/kg. This difference did not occur regarding weight increase values and color parameters. The pasta with 75 g/kg orange fiber can be considered a “high fiber” product, with the total dietary fiber content of the pasta increasing by 99% compared to control pasta. The carotenoid and phenolic contents of pasta increased significantly with the incorporation of fiber at 75 g/kg, but only the pasta formulation with 25 g/kg of orange fiber did not differ from control pasta in relation to all of the sensory attributes and presented an acceptance greater than 75%. The addition of orange fiber byproducts to pastas is an interesting alternative because fiber has a high nutritional value and an abundance of antioxidants.
Resumo:
Abstract The aim of this work was to evaluate a non-agitated process of bioethanol production from soybean molasses and the kinetic parameters of fermentation using a strain of Saccharomyces cerevisiae (ATCC® 2345). Kinetic experiment was conducted in medium with 30% (w v-1) of soluble solids without supplementation or pH adjustment. The maximum ethanol concentration was in 44 hours, the ethanol productivity was 0.946 g L-1 h-1, the yield over total initial sugars (Y1) was 47.87%, over consumed sugars (Y2) was 88.08% and specific cells production rate was 0.006 h-1. The mathematical polynomial was adjusted to the experimental data and provided very similar parameters of yield and productivity. Based in this study, for one ton of soybean molasses can be produced 103 kg of anhydrous bioethanol.