92 resultados para DIVALENT-CATIONS
Resumo:
The hydrated sodium salt of EDTA, Na2H2Y·2H2O, cannot be used as a primary standard for titrations due to uncertainties in the water content. An alkalimetric titration of the homogenized solid in the presence of a small excess of BaCl2·2H2O allows one to titrate quantitatively the released two hydrogen cations with end-point indication by phenolphthalein or potentiometry. This leads one to calculate the average molar mass of the reagent and its water content, allowing to use it to prepare EDTA standard solutions. One titrated sample led to the formula Na2H2Y·1.876 H2O, and 370.01 g.mol-1 for the average molar mass.
Resumo:
Three compounds have been synthesized with formulae [3-MeRad][Ni(dmit)2] (1), [4-MeRad][Ni(dmit)2] (2) and [4-PrRad][Ni(dmit)2] (3) where [Ni(dmit)2]- is an anionic pi-radical (dmit = 1,3-dithiol-2-thione-4,5-dithiolate) and [3-MeRad]+ is 3-N-methylpyridinium alpha-nitronyl nitroxide, [4-MeRad]+ is 4-N-methylpyridinium alpha-nitronyl nitroxide and [4-PrRad]+ is 4-N-propylpyridinium alpha-nitronyl nitroxide. The temperature-dependent magnetic susceptibility of 1 revealed that an antiferromagnetic interaction operates between the 3-MeRad+ radical cations with exchange coupling constants of J1 = - 1.72 cm-1 and antiferromagnetism assigned to the spin ladder chains of the Ni(dmit)2 radical anions. Compound 1 exhibits semiconducting behavior and 3 presents capacitor behavior in the temperature range studied (4 - 300 K).
Resumo:
Adsorption of heavy metal cations by activated carbon is dependent on the capacity of the material in promoting adsorption and the time needed to reach equilibrium. Carbon samples were previously activated either by phosphoric acid treatment at 400 ºC or by steam at 800 ºC. The results of Pb(II) adsorption by these activated carbons have shown that equilibrium was typically reached within the first 5 min of contact between carbon and metal solution, with a maximum adsorption capacity higher than 69 mg g-1 for the vapor-activated sample. Temperature influences the sorption capacity, which corresponds to an endothermic process. Lead(II) retention is more pronounced at high temperature and low pH.
Resumo:
In potentiometric titrations of metal cations with EDTA the Hg/HgY2- system is usually used to detect the end point. However, the use of mercury has been discouraged in analytical procedures due to its toxicity. In this work the Cu/CuY2- system was used as indicator electrode for potentiometric titrations of some metal cations with EDTA. The solutions of Cu2+, Cd2+, Mn2+, Co2+ and Zn2+ were titrated with Na2EDTA solution in the presence of a small concentration of the CuY2- complex using a copper wire as indicator electrode. The potentiometric titrations with the Cu/CuY2- system showed good correlation when compared with an Hg/HgY2- system.
Resumo:
Being mercury one of the most toxic heavy metals present in the environment, it is of major concern to develop cleanup technologies to remove it from wastewater and recover mercury polluted ecosystems. In this context, we study the potential of some microporous titanosilicates and zirconosilicates for taking up Hg2+ from aqueous solutions. These materials have unique chemical and physical properties, and here we are able to confirm that they readily remove Hg2+ from aqueous solutions. Moreover, the presence of the competitive Mg2+ and Na+, which are some of the dominant cations in natural waters, does not reduce the uptake capacity of some of these materials. Thus, several inorganic materials reported here may have important environmental applications, efficiently removing Hg2+ from aqueous solutions.
Resumo:
Vanadium oxide supported on hydrotalcite-type precursors was studied in the decomposition of isopropanol. Hydrotalcite-type compounds with different y = Mg+2/Al+3 ratios were synthesized by the method of coprecipitating nitrates of Mg+2 and Al+3 cations with K2CO3 as precipitant. The X-ray diffraction patterns of Al-rich hydrotalcite precursors showed the presence of crystalline phases of brucite and gibbsite. It was shown that chemical composition, texture, acid-base properties of the active sites and also Mg/Al ratio strongly affect the formation of the products in the oxidation of isopropanol. The Al-rich catalysts were much more active than the Mg-rich ones, converting isopropanol mainly to propylene.
Resumo:
A simple and sensitive on-line flow injection system for determination of zinc with FAAS has been described. The method is based on the separation and preconcentration of zinc on a microcolumn of immobilized Alizarin Red S on alumina. The adsorbed analyte is then eluted with 250 µL of nitric acid (1 mol L-1) and is transported to flame atomic absorption spectrometer for quantification. The effect of pH, sample and eluent flow rates and presence of various cations and anions on the retention of zinc was investigated. The sorption of zinc was quantitative in the pH range of 5.5-8.5. For a sample volume of 25 mL an enrichment factor of 144 and a detection limit (3S) of 0.2 µg L-1 was obtained. The precision (RSD, n=7) was 3.0% at the 20 µg L-1 level. The developed system was successfully applied to the determination of zinc in water samples, hair, urine and saliva.
Resumo:
This work describes the development of a home-made capillary electrophoresis (CE) system based on the capacitively coupled contactless conductivity detection (C4D) for the separation of the metallic species Zn2+, Cr3+, Pb2+, Cd2+, Co2+, Cu2+, Ni2+ e Tl+. A background electrolyte composed of MES/Histidine 0,02 mol L-1 (pH 5.0) was optimized for the separation of the metallic species by using organic solvents and complexing agents as additives. The system allowed the determination of the metallic species using MES/Histidine 0,02 mol L-1 and methanol 5% (pH 5.0) as a background electrolyte, 15 kV separation voltage and hydrodynamic injection by gravity.
Resumo:
A method employing chitosan as complexant agent in the removal of copper(II) ions generally present in the Brazilian cachaça samples is herein proposed. The efficiency of this method is attributed to its high capacity of metal cations adsorption, mainly due to presence of hydroxyl and amine groups that can serve as chelating sites. The removal of copper(II) ions from this alcoholic beverage was efficient employing either in column and batch system. The analysis were carried out employing the flame atomic absorption spectrometry and the remaining copper(II) concentrations in the treated cachaça were lower than LOD of FAAS technique.
Resumo:
Solid solution of iron doped potassium strontium niobate with KSr2(FeNb4)O15-Δ stoichiometry was prepared by high efficiency ball milling method. Structural characterization was carried out by X-ray diffraction. Crystalline structure was analyzed by the Rietveld refinements using the FullProf software. The results showed a tetragonal system with the tetragonal tungsten bronze structure - TTB (a = 12.4631 (2) Å and c = 3.9322 (6) Å, V = 610.78 (2) ų). In this work, the sites occupancy by the K+, Sr2+ and Fe3+ cations on the TTB structure were determined. NbO6 polihedra distortion and its correlation with the theoretical polarization are discussed.
Resumo:
Sodium faujasite zeolites with Si/Al ratio of 1.4 and 2.5 were exchanged with methylammonium cations. The influence of framework aluminum and ion exchange degree in their basic properties were evaluated. These properties were assessed in the Knoevenagel catalytic condensation. The sodium ion exchange was restricted to the supercavity and the exchange degree depended on the cation volume and on the Si/Al ratio. The higher catalytic activity is achieved for the zeolite with the lower Si/Al ratio exchanged with the monomethylammonium cation. The best performance of this catalyst is attributed to the higher basicity in combination with elevated micropore volume.
Resumo:
Cellulose acetate polymeric membranes had been prepared by a procedure of two steps, combining the method of phase inversion and the technique of hydrolysis-deposition. The first step was the preparation of the membrane, and together was organomodified with tetraethylortosilicate and 3-aminopropyltrietoxysilane. Parameters that exert influence in the complexation of the metallic ion, as pH, time of complexation, metal concentration, had been studied in laboratory using tests of metal removal. The membranes had presented resistance mechanics and reactivity to cations, being able to be an alternative for the removal, daily pay-concentration or in the study of the lability of metals complexed.
Resumo:
The application of organo nanoclay 5-(4-dimethylamino-benzylidene) rhodanine-immobilized as a new, easily prepared, and stable solid sorbent for preconcentration trace amounts of Au(III) ions in aqueous solution is presented. The sorption of Au(III) ions was quantitative in the pH range of 2-4, and quantitative desorption occurred instantaneously with 10.0 mL of a mixture containing 0.5 mol L-1 Na2S2O3 and KSCN. Various parameters, such as the effect of pH, breakthrough volume, extraction time, and interference of a large number of anions and cations have been studied. The proposed method has been applied for determination of trace amount of gold in water samples.
Resumo:
The present paper describes the effect of metals ions on the in vitro availability of enoxacin (a second generation quinolone antibiotic) owing to drug-metal interaction. These interaction studies were performed at 37 °C in different pH environments simulating human body compartments and were studied by UV spectroscopic technique. In order to determine the probability of these reactions different kinetic parameters (dissolution constants (K) and free energy change (ΔG)) for these reactions were also calculated. It is proposed that the structure of enoxacin contains various electron donating sites which facilitate its binding with metallic cations forming chelates. Hence taking food products, nutritional supplements or multivitamins containing multivalent cations at the same time as enoxacin, could reduce the absorption of the drug into the circulation and thus would decrease the effectiveness of the drug. In addition, the MIC of enoxacin for various microorganisms before and after interaction with metal ions was calculated which in most cases was increased which possibly could impair the clinical efficacy of the drug.
Resumo:
Two sampling points were chosen and forty samples were collected between January and December 2006 at Alto Sorocaba basin. The rainwater pH varied from 5.46 to 6.36 (Ibiúna) and 5.26 to 6.81 (Itupararanga), being Ca2+ the main ion responsible for controlling the rainwater pH. The ionic concentrations decreased in the following order: Ca2 +>Na+> Mg2+>K+ for cations and SO4(2-)>HCO3->NO 3->Cl- >PO4(3-) for anions. The annual atmospheric deposition appeared to be controlled mostly by following sources: mining activities and cement factories (Ca2+ and HCO3-), natural soil dust (Na+, Mg2+ and HCO3-), fossil fuel burning (SO4(2-)) and agriculture activities (K+, NO3- and PO4(3-)).