149 resultados para DIETARY-LIPID MANIPULATION
Resumo:
Aerobic metabolism changes rapidly to glycolysis post-mortem resulting in a pH-decrease during the transformation of muscle in to meat affecting ligand binding and redox potential of the heme iron in myoglobin, the meat pigment. The "inorganic chemistry" of meat involves (i) redox-cycling between iron(II), iron(III), and iron(IV)/protein radicals; (ii) ligand exchange processes; and (iii) spin-equilibra with a change in coordination number for the heme iron. In addition to the function of myoglobin for oxygen storage, new physiological roles of myoglobin are currently being discovered, which notably find close parallels in the processes in fresh meat and nitrite-cured meat products. Myoglobin may be characterized as a bioreactor for small molecules like O2, NO, CO, CO2, H2O, and HNO with importance in bio-regulation and in protection against oxidative stress in vivo otherwise affecting lipids in membranes. Many of these processes may be recognised as colour changes in fresh meat and cured meat products under different atmospheric conditions, and could also be instructive for teaching purposes.
Resumo:
Free radicals induce lipid peroxidation, playing an important role in pathological processes. The injury mediated by free radicals can be measured by conjugated dienes, malondialdehyde, 4-hydroxynonenal, and others. However, malondialdehyde has been pointed out as the main product to evaluate lipid peroxidation. Most assays determine malondialdehyde by its reaction with thiobarbituric acid, which can be measured by indirect (spectrometry) and direct methodologies (chromatography). Though there is some controversy among the methodologies, the selective HPLC-based assays provide a more reliable lipid peroxidation measure. This review describes significant aspects about MDA determination, its importance in pathologies and biological samples treatment.
Resumo:
In spite of different methods reported in the literature to determine olanzapine in biological fluids, all of them used high volumes of plasma. Therefore, the purpose of this paper was to develop an LC-MS/MS method using small plasma volume (0.1 mL) to apply in a preclinical pharmacokinetic investigation. The method was linear over the concentration ranges of 10 - 1000 ng mL-1. Extraction recoveries, stability, and validation parameters were evaluated. Results were within the acceptable limits of international guidelines. A significant decrease in clearance led to a significant 2.26-times increase in AUC0 - 6h of olanzapine-loaded lipid-core nanocapsules compared with free-olanzapine.
Resumo:
Quetiapine is an atypical antipsychotic used to treat schizophrenia. However, despite great interest for its chronic therapeutic use, quetiapine has some important side effects such as weight gain induction. The development of a quetiapine nanocarrier can potentially target the drug into central nervous system, resulting in a reduction of systemic side effects and improved patient treatment. In the present work, a simple liquid chromatography/ultraviolet detection (LC/UV) analytical method was developed and validated for quantification of total quetiapine content in lipid core nanocapsules as well as for determination of incorporation efficiency. An algorithm proposed by Oliveira et al. (2012) was applied to characterize the distribution of quetiapine in the pseudo-phases of the nanocarrier, leading to a better understanding of the quetiapine nanoparticles produced. The analytical methodology developed was specific, linear in the range of 0.5 to 100 µg mL−1 (r2 > 0,99), and accurate and precise (R.S.D < ±5%). The absolute recovery of quetiapine from the nanoparticles was approximately 98% with an incorporation efficiency of approximately 96%. The results indicated that quetiapine was present in a type III distribution according to the algorithm, and was mainly located in the core of the nanoparticle because of its logD in the formulation pH (6.86 ± 0.4).
Resumo:
OBJECTIVE: To elucidate the role of the spleen and splenic allograft in lipid control and evaluate its effect on the lipid profile of rats.METHOD: 32 male Wistar rats were randomly assigned into four groups: control group (1), total splenectomy group (2), splenectomy and implantation of allograft group (3) and double spleen group (4). Each group was subdivided into two subgroups: A and B, based on the death of the animals after 30 or 120 days of monitoring. The procedures in groups 2, 3 and 4 were made simultaneously, and splenectomized animals, groups 2 and 3 were donors, respectively, for the animals of groups 3 and 4. In group 4 the spleen was preserved and the animals received implants from the spleens of rats from group 3. The regeneration of splenic tissue was evaluated by macroscopic and microscopic analyzes of the grafts and own spleens, as well as with measurements of VLDL, HDL, LDL, total cholesterol and triglycerides.RESULTS: after 120 days, Group 4 showed levels of total cholesterol and LDL lower than the other groups. Group 1 had higher levels of lipids.CONCLUSION: The technique of double spleen was effective in the control of lipid metabolism, corroborating the function of the spleen as a reserve of lipids.
Resumo:
Objective: To evaluate the behavior of acute phase proteins and lipid profile in patients undergoing Roux-en-Y gastric bypass. Methods : We conducted a prospective study, consisting of three moments: M1 - preoperative (24 hours before surgery); M2 - 30 days after surgery; and M3 - 180 days after surgery. We carried measured height and BMI, as well as determined the concentrations of acute phase proteins (C-reactive protein (CRP), albumin and Alpha-1-acid glycoprotein) and total cholesterol, LDL-c, HDL-c and triacylglycerol. Results : participants comprised 25 individuals, with a mean age of 39.28 ± 8.07, 72% female. At all times of the study there was statistically significant difference as for weight loss and BMI. We found a significant decrease in CRP concentrations between the moments M1 and M3 (p = 0.041) and between M2 and M3 (p = 0.018). There was decrease in Alpha-1-GA concentrations between M1 and M2 (p = 0.023) and between M1 and M3 (p = 0.028). The albumin values increased, but did not differ between times. Total cholesterol and triacylglycerol decreased significantly ay all times. LDL-c concentrations decreased and differed between M1 and M2 (p = 0.001) and between M1 and M3 (p = 0.001). HDL-c values increased, however only differing between M1 and M2 (p = 0.050). Conclusion : Roux-en-Y gastric bypass promoted a decrease in plasma concentrations of CRP and Alpha-1-acid glycoprotein, improving lipid and inflammatory profiles.
Resumo:
Objective Polycystic ovary syndrome (PCOS) is the most common endocrine metabolic disorder in women between menarche and menopause. Clinical hyperandrogenism is the most important diagnostic criterion of the syndrome, which manifests as hirsutism in 70% of cases. Hirsute carriers of PCOS have high cardiovascular risk. Lipid accumulation product (LAP) is an index for the evaluation of lipid accumulation in adults and the prediction of cardiovascular risk. The aim of this study was to evaluate the association between LAP and hirsutism in women with PCOS. Methods This was a cross-sectional observational study of a secondary database, which included 263 patients who had visited the Hyperandrogenism Outpatient Clinic from November 2009 to July 2014. The exclusion criteria were patients without Ferriman-Gallwey index (FGI) and/or LAP data. We used the Rotterdam criteria for the diagnosis of PCOS. All patients underwent medical assessment followed by measurement and recording of anthropometric data and the laboratory tests for measurement of the following: thyroid-stimulating hormone, follicle-stimulating hormone, prolactin, total testosterone, sex hormone binding globulin, 17-α-hydroxyprogesterone (follicular phase), glycohemoglobin A1c, and basal insulin. In addition, the subjects underwent lipid profiling and oral glucose tolerance tests. Other laboratory measurements were determined according to clinical criteria. LAP and the homeostatic model assessment index (HOMA-IR) were calculated using the data obtained. We divided patients into two groups: the PCOS group with normal LAP (< 34.5) and the PCOS group with altered LAP (> 34.5) to compare the occurrence of hirsutism. For statistical analysis, we used SPSS Statistics for Windows(r) and Microsoft Excel programs, with descriptive (frequencies, percentages, means, and standard deviations) and comparative analyses (Student's t-test and Chi-square test). We considered relations significant when the p-value was≤0.05. Results LAP was high in most patients (n = 177; 67.3%) and the FGI indicated that 58.5% of the patients (n = 154) had hirsutism. The analysis by LAP quartiles showed a positive correlation (p = 0.04) among patients with a high FGI and an upper quartile LAP (> 79.5) when compared with those with LAP < 29.0 (lower quartile). Conclusion This study demonstrated an association between high LAP and hirsutism. The FGI could represent a simple and low-cost tool to infer an increased cardiovascular risk in women with PCOS.
Resumo:
To evaluate the influence of diets with different degrees of energy deficiency on the hormonal profile and vital functions, 12 steers were randomly distributed into 3 groups of 4 animals. For 140 days, each group received (G1) a diet to promote a weight gain of 900gr/day (17.7 Mcal/d DE and 13% CP), (G2) 80% of the maintenance requirements (5.8 Mcal/d DE and 7% CP), or (G3) 60% of the maintenance requirements (4.7 Mcal/d DE and 5% CP). In G2 and G3, the energy deficit caused a marked decrease in the heart rate and respiratory rate and a reduction in the blood levels of Insulin like growth factor-1 (IGF-1) and triiodothyronine (T3). The decrease in heart rate, respiratory movement and, to a lesser extent, reduction of the rectal temperature, reflected the low status of energy and was negatively impacted by the low levels of T3. There was a strong correlation between the hormones T3 and IGF-1 (r=0.833). There were also strong correlations between T3 and HR (r=0.701), T3 and RR (r=0.632), IGF-1 and HR (r=0.731), and IGF-1 and RR (r=0.679). There were intermediate correlations between T3 and TºC (r=0.484), T3 and insulin (r=0.506), IGF-1 and insulin (r=0.517), and IGF-1 and TºC (r=0.548). This study showed the influence of a long period of providing an energy-deficient diet on animal performance, correlating hormonal status and vital functions in growing cattle. The results indicated that the evaluated parameters represent an important tool for the early detection of dietary deficiency.
Resumo:
Leaves of Pothomorphe peltata (L.) Miq. (Piperaceae) are used locally as anti-inflammatory, antipyretic, hepatoprotective and diuretic infusions and to treat external ulcers and local infections in several parts of the Peruvian, Bolivian and Brazilian Amazon region. The antioxidant activity of different extracts of P. peltata was studied using the hydroperoxide-initiated chemiluminescence assay in liver homogenates, and the methanolic extract was found to have the highest antioxidant activity, with an IC50 = 4 µg/ml. Aqueous and dichloromethane extracts did not show antioxidant activity. The extracts were further evaluated using the thiobarbituric acid-reactive substances (TBARS) assay. Finally, an assay of DNA sugar damage induced by Fe (II) salt was used to determine the capacity of the extracts to suppress the oxidative degradation of DNA. All the extracts showed antioxidant activity in the latter two bioassays. The methanolic extract showed the highest activity in reducing oxidative damage to DNA, with an IC50 = 5 µg/ml. Since this extract was highly effective in reducing chemiluminescence and DNA damage, and because the latter activity could be due to the presence of compounds that bind to DNA, DNA-binding activity was studied using the DNA-methyl green (DNA-MG) bioassay. A 30% decrease in the initial absorbance of DNA-MG complex was observed in the methanolic extract at 1000 µg/ml, suggesting the presence of compounds that bind to genetic material. No DNA-binding activity was observed in the aqueous or dichloromethane extracts
Resumo:
The aim of the present investigation was to extend a previous study, showing a correlation of the variations of hemolymph carbohydrates with synodic lunar-like cycle and its circaseptan harmonics to worker honeybee hemolymph lipids. Hemolymph lipid concentrations of emerging worker imagos were analyzed in terms of one ideal synodic lunar cycle and processed by the cosinor method testing the null hypothesis versus the presence of 29.5-, 14.8- or 7.4-day periods in the data. A rhythmicity statistically compatible with a 29.5-day rhythm was observed for triacylglycerols and steroids as well as for body weight. A circadiseptan rhythm was determined for 1,3 diacylglycerols, while fatty acids and phospholipids exhibited a circaseptan rhythm. An agreement of peaks for triacylglycerols, steroids and body weight at the new moon, but not at the full moon, was noted with respect to trehalose and glucose circadiseptan rhythms. The latter moon-phase timing of peaks and nadirs, compared with that previously determined for trehalose and glucose, appeared to be identical to the circadiseptan rhythm and reciprocal for the circaseptan rhythms of 1,3 diacylglycerols. Reciprocal tendencies in circaseptans of trehalose and glucose on the one hand, and fatty acids and phospholipids on the other are indicated. The underlying causal nexus of these relationships is unknown
Resumo:
Aluminum (Al3+) intoxication is thought to play a major role in the development of Alzheimer's disease and in certain pathologic manifestations arising from long-term hemodialysis. Although the metal does not present redox capacity, it can stimulate tissue lipid peroxidation in animal models. Furthermore, in vitro studies have revealed that the fluoroaluminate complex induces diacylglycerol formation, 43-kDa protein phosphorylation and aggregation. Based on these observations, we postulated that Al3+-induced blood platelet aggregation was mediated by lipid peroxidation. Using chemiluminescence (CL) of luminol as an index of total lipid peroxidation capacity, we established a correlation between lipid peroxidation capacity and platelet aggregation. Al3+ (20-100 µM) stimulated CL production by human blood platelets as well as their aggregation. Incubation of the platelets with the antioxidants nor-dihydroguaiaretic acid (NDGA) (100 µM) and n-propyl gallate (NPG) (100 µM), inhibitors of the lipoxygenase pathway, completely prevented CL and platelet aggregation. Acetyl salicylic acid (ASA) (100 µM), an inhibitor of the cyclooxygenase pathway, was a weaker inhibitor of both events. These findings suggest that Al3+ stimulates lipid peroxidation and the lipoxygenase pathway in human blood platelets thereby causing their aggregation
Resumo:
Total serum lipids, as well as apolipoproteins A-I (apo A-I) and B (apo B), were determined in 74 patients with chronic liver failure without cholestasis and in 82 normal subjects. The VLDL, LDL and HDL lipid fractions were reduced in the liver failure group by 36%, 24% and 46%, respectively (P<0.001). Apolipoproteins A-I and B were also reduced by 26% and 25%, respectively (P<0.001). However, the reduction of HDL cholesterol (HDLc) was more pronounced than that of apo A-I and the HDLc:apo A-I ratio was significantly lower in the liver failure group. After separating these patients into groups with plasma albumin lower than 3.0, between 3.0 and 3.5, and higher than 3.5 g/dl, the HDLc:apo A-I ratio was proportional to plasma albumin, but the correlation was not statistically significant. When these patients were separated by the Child classification of liver function, there was a correlation between the HDLc:apo A-I ratio and liver function. The differences in the HDLc:apo A-I ratio between the Child groups B and C, and A and C were statistically significant (P<0.05). We conclude that there is a more pronounced reduction in HDL cholesterol than in apo A-I in liver failure patients. Therefore, the HDLc:apo A-I ratio is a marker of liver function, probably because there is a decreased lecithin-cholesterol acyltransferase production by the diseased liver
Resumo:
This study evaluates the influence of different concentrations of calcium on blood pressure of normotensive rats. Four groups of Wistar rats (A, B, C and D) had free access to modified isocaloric and isoproteic diets containing 0.2, 0.5, 2 and 4 g% calcium as calcium carbonate for a period of 30 days. Systolic and diastolic arterial blood pressures were monitored in awake rats by the indirect tail cuff method using a Physiograph equipped with transducers and preamplifiers. Body weight and length and food intake were monitored. Under the conditions of the present experiment, the systolic and diastolic arterial blood pressures of group D rats fed a diet containing 4 g% calcium were significantly (P<0.05) lower compared to rats of the other groups.
Resumo:
Hippocrates was the first to suggest the healing power of food; however, it was not until the medieval ages that food was considered a tool to modify temperament and mood, although scientific methods as we know them today were not in use at the time. Modern scientific methods in neuroscience began to emerge much later, leading investigators to examine the role of diet in health, including mental well-being, with greater precision. This review shows how short- and long-term forced dietary interventions bring about changes in brain structure, chemistry, and physiology, leading to altered animal behavior. Examples will be presented to show how diets alter brain chemistry, behavior, and the action of neuroactive drugs. Most humans and most animal species examined in a controlled setting exhibit a fairly reproducible pattern of what and how they eat. Recent data suggest that these patterns may be under the neurochemical and hormonal control of the organisms themselves. Other data show that in many instances food may be used unconsciously to regulate mood by seemingly normal subjects as well as those undergoing drug withdrawal or experiencing seasonal affective disorders and obesity-related social withdrawal. We will discuss specific examples that illustrate that manipulation of dietary preference is actually an attempt to correct neurochemical make-up.
Resumo:
The free form of the iron ion is one of the strongest oxidizing agents in the cellular environment. The effect of iron at different concentrations (0, 1, 5, 10, 50, and 100 µM Fe3+) on the normal human red blood cell (RBC) antioxidant system was evaluated in vitro by measuring total (GSH) and oxidized (GSSG) glutathione levels, and superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px) and reductase (GSH-Rd) activities. Membrane lipid peroxidation was assessed by measuring thiobarbituric acid reactive substance (TBARS). The RBC were incubated with colloidal iron hydroxide and phosphate-buffered saline, pH 7.45, at 37oC, for 60 min. For each assay, the results for the control group were: a) GSH = 3.52 ± 0.27 µM/g Hb; b) GSSG = 0.17 ± 0.03 µM/g Hb; c) GSH-Px = 19.60 ± 1.96 IU/g Hb; d) GSH-Rd = 3.13 ± 0.17 IU/g Hb; e) catalase = 394.9 ± 22.8 IU/g Hb; f) SOD = 5981 ± 375 IU/g Hb. The addition of 1 to 100 µM Fe3+ had no effect on the parameters analyzed. No change in TBARS levels was detected at any of the iron concentrations studied. Oxidative stress, measured by GSH kinetics over time, occurs when the RBC are incubated with colloidal iron hydroxide at concentrations higher than 10 µM of Fe3+. Overall, these results show that the intact human RBC is prone to oxidative stress when exposed to Fe3+ and that the RBC has a potent antioxidant system that can minimize the potential damage caused by acute exposure to a colloidal iron hydroxide in vitro.