75 resultados para Crack Formation in Soils
Resumo:
The no-till system with complex cropping sequences may improve the structural quality and carbon (C) sequestration in soils of the tropics. Thus, the objective of this study was to evaluate the effects of cropping sequences after eight years under the no-till system on the physical properties and C sequestration in an Oxisol in the municipality of Jaboticabal, Sao Paulo, Brazil. A randomized split-block design with three replications was used. The treatments were combinations of three summer cropping sequences - corn/corn (Zea mays L.) (CC), soybean/soybean (Glycine max L. Merryll) (SS), and soybean-corn (SC); and seven winter crops - corn, sunflower (Helianthus annuus L.), oilseed radish (Raphanus sativus L.), pearl millet (Pennisetum americanum (L.) Leeke), pigeon pea (Cajanus cajan (L.) Millsp), grain sorghum (Sorghum bicolor (L.) Moench), and sunn hemp (Crotalaria juncea L.). Soil samples were taken at the 0-10 cm depth after eight years of experimentation. Soil under SC and CC had higher mean weight diameter (3.63 and 3.55 mm, respectively) and geometric mean diameter (3.55 and 2.92 mm) of the aggregates compared to soil under SS (3.18 and 2.46 mm). The CC resulted in the highest soil organic C content (17.07 g kg-1), soil C stock (15.70 Mg ha-1), and rate of C sequestration (0.70 Mg ha-1 yr-1) among the summer crops. Among the winter crops, soil under pigeon pea had the highest total porosity (0.50 m³ m-3), and that under sunn hemp had the highest water stable aggregates (93.74 %). In addition, sunn hemp did not differ from grain sorghum and contained the highest soil organic C content (16.82 g kg-1) and also had the highest rate of C sequestration (0.67 Mg ha-1 yr-1). The soil resistance to penetration was the lower limit of the least limiting water range, while the upper limit was air-filled porosity for soil bulk densities higher than 1.39 kg dm-3 for all cropping sequences. Within the SC sequence, soil under corn and pigeon pea increased least limiting water range by formation of biopores because soil resistance to penetration decreased with the increase in soil bulk density.
Resumo:
Phytotoxicity and transfer of potentially toxic elements, such as cadmium (Cd) or barium (Ba), depend on the availability of these elements in soils and on the plant species exposed to them. With this study, we aimed to evaluate the effect of Cd and Ba application rates on yields of pea (Pisum sativum L.), sorghum (Sorghum bicolor L.), soybean (Glycine max L.), and maize (Zea mays L.) grown under greenhouse conditions in an Oxisol and an Entisol with contrasting physical and chemical properties, and to correlate the amount taken up by plants with extractants commonly used in routine soil analysis, along with transfer coefficients (Bioconcentration Factor and Transfer Factor) in different parts of the plants. Plants were harvested at flowering stage and measured for yield and Cd or Ba concentrations in leaves, stems, and roots. The amount of Cd accumulated in the plants was satisfactorily evaluated by both DTPA and Mehlich-3 (M-3). Mehlich-3 did not relate to Ba accumulated in plants, suggesting it should not be used to predict Ba availability. The transfer coefficients were specific to soils and plants and are therefore not recommended for direct use in risk assessment models without taking soil properties and group of plants into account.
Resumo:
An oat bioassay was conducted in pots under greenhouse conditions to determine the persistence of atrazine, metribuzin and simazine herbicides in soils of the southeast of Buenos Aires Province, Argentina. Atrazine rates of 0, 0.58, 1.16 and 2.32 mug g-1 of active ingredient (a.i.), metribuzin rates of 0, 0.14, 0.28 and 0.56 mug g-1 of a.i., and simazine rates of 0, 0.72, 1.45 and 2.9 mug g-1 of a.i. dry soil weight were applied to pots containing soils from Balcarce and San Cayetano sites. Organic matter (OM) content and pH of Balcarce soil were 5.5% and 5.8%, while for San Cayetano soil were 2.9% and 6.7%, respectively. Relative dry weight (RDW) of oat shoots was calculated as percentage of control. Considering a 20% RDW reduction of oat shoots, persistences of recommended rates for the region were: atrazine (1.16 mug g-1 of a.i.), 78 and 130 days after treatment (DAT) for Balcarce and San Cayetano soil, respectively; metribuzin (0.28 mug-1 of a.i.), 63 and 77 DAT for Balcarce and San Cayetano soil, respectively; simazine (1.45 mug g-1 of a.i.), 81 and 156 DAT for Balcarce and San Cayetano soil, respectively. Results show that persistence of atrazine, metribuzin and simazine in soil increased with high rates, low OM content and high pH.
Resumo:
Specific combustion programs (Gaseq, Chemical equilibria in perfect gases, Chris Morley) are used to model dioxin and formation in the incineration processes of urban solid wastes. Thanks to these programs, it is possible to establish correlations with the formation mechanisms postulated in literature on the subject. It was found that minimum oxygen quantities are required to obtain a significant formation of these compounds and that more furans than dioxins are formed. Likewise, dioxin and furan formation is related to the presence of carbon monoxide, and dioxin and furan distribution among its different compounds depends on the chlorine and hydrogen relative composition. This is due to the fact that an increased chlorine availability leads to the formation of compounds bearing a higher chlorine concentration (penta-, hexa-, hepta-, and octachlorides), whereas an increased hydrogen availability leads to the formation of compounds bearing a lower chlorine number (mono, di-, tri-, and tetrachlorides).
Resumo:
We investigated the angiotensin II (Ang II)-generating system by analyzing the vasoconstrictor effect of Ang II, angiotensin I (Ang I), and tetradecapeptide (TDP) renin substrate in the absence and presence of inhibitors of the renin-angiotensin system in isolated rat aortic rings and mesenteric arterial beds with and without functional endothelium. Ang II, Ang I, and TDP elicited a dose-dependent vasoconstrictor effect in both vascular preparations that was completely blocked by the Ang II receptor antagonist saralasin (50 nM). The angiotensin converting enzyme (ACE) inhibitor captopril (36 µM) completely inhibited the vasoconstrictor effect elicited by Ang I and TDP in aortic rings without affecting that of Ang II. In contrast, captopril (36 µM) significantly reduced (80-90%) the response to bolus injection of Ang I, without affecting those to Ang II and TDP in mesenteric arteries. Mechanical removal of the endothelium greatly potentiated (70-95%) the vasoconstrictor response to Ang II, Ang I, and TDP in aortic rings while these responses were unaffected by the removal of the endothelium of mesenteric arteries with sodium deoxycholate infusion. In addition, endothelium disruption did not change the pattern of response elicited by these peptides in the presence of captopril. These findings indicate that the endothelium may not be essential for Ang II formation in rat mesenteric arteries and aorta, but it may modulate the response to Ang II. Although Ang II formation from Ang I is essentially dependent on ACE in both vessels, our results suggest the existence of an alternative pathway in the mesenteric arterial bed that may play an important role in Ang II generation from TDP in resistance but not in large vessels during ACE inhibition
Resumo:
Nitrogen has a complex dynamics in the soil-plant-atmosphere system. N fertilizers are subject to chemical and microbial transformations in soils that can result in significant losses. Considering the cost of fertilizers, the adoption of good management practices like fertigation could improve the N use efficiency by crops. Water balances (WB) were applied to evaluate fertilizer N leaching using 15N labeled urea in west Bahia, Brazil. Three scenarios (2008/2009) were established: i) rainfall + irrigation the full year, ii) rainfall only; and iii) rainfall + irrigation only in the dry season. The water excess was considered equal to the deep drainage for the very flat area (runoff = 0) with a water table located several meters below soil surface (capillary rise = 0). The control volume for water balance calculations was the 0 - 1 m soil layer, considering that it involves the active root system. The water drained below 1 m was used to estimate fertilizer N leaching losses. WB calculations used the mathematic model of Penman-Monteith for evapotranspiration, considering the crop coefficient equal to unity. The high N application rate associated to the high rainfall plus irrigation was found to be the main cause for leaching, which values were 14.7 and 104.5 kg ha-1 for the rates 400 and 800 kg ha-1 of N, corresponding to 3.7 and 13.1 % of the applied fertilizer, respectively.
Hydraulic conductivity in response to exchangeable sodium percentage and solution salt concentration
Resumo:
Hydraulic conductivity is determined in laboratory assays to estimate the flow of water in saturated soils. However, the results of this analysis, when using distilled or deionized water, may not correspond to field conditions in soils with high concentrations of soluble salts. This study therefore set out to determine the hydraulic conductivity in laboratory conditions using solutions of different electrical conductivities in six soils representative of the State of Pernambuco, with the exchangeable sodium percentage adjusted in the range of 5-30%. The results showed an increase in hydraulic conductivity with both decreasing exchangeable sodium percentage and increasing electrical conductivity in the solution. The response to the treatments was more pronounced in soils with higher proportion of more active clays. Determination of hydraulic conductivity in laboratory is routinely performed with deionized or distilled water. However, in salt affected soils, these determinations should be carried out using solutions of electrical conductivity different from 0 dS m-1, with values close to those determined in the saturation extracts.
DISTRIBUTION OF DERMATOPHYTES FROM SOILS OF URBAN AND RURAL AREAS OF CITIES OF PARAIBA STATE, BRAZIL
Resumo:
SUMMARYThe dermatophytes, keratinophilic fungi, represent important microorganisms of the soil microbiota, where there are cosmopolitan species and others with restricted geographic distribution. The aim of this study was to broaden the knowledge about the presence of dermatophytes in soils of urban (empty lots, schools, slums, squares, beaches and homes) and rural areas and about the evolution of their prevalence in soils of varying pH in cities of the four mesoregions of Paraiba State, Brazil. Soil samples were collected from 31 cities of Paraiba State. Of 212 samples, 62% showed fungal growth, particularly those from the Mata Paraibana mesoregion (43.5%), which has a tropical climate, hot and humid. Soil pH varied from 4.65 to 9.06, with 71% of the growth of dermatophytes occurring at alkaline pH (7.02 - 9.06) (ρ = 0.000). Of 131 strains isolated, 57.3% were geophilic species, particularly Trichophyton terrestre(31.3%) and Mycrosporum gypseum(21.4%). M. nanum and T. ajelloi were isolated for the first time in Paraiba State. The zoophilic species identified were T. mentagrophytes var.mentagrophytes (31.3 %) and T. verrucosum (7.6 %), and T. tonsurans was isolated as an anthropophilic species. The soils of urban areas including empty lots, schools, slums and squares of cities in the mesoregions of Paraiba State were found to be the most suitable reservoirs for almost all dermatophytes; their growth may have been influenced by environmental factors, soils with residues of human and/or animal keratin and alkaline pH.
Resumo:
Introduction The aim of this study was to investigate the effects of Rosmarinus officinalis essential oil on germ tube formation by Candida albicans isolated from denture wearers. Methods Ten C. albicans isolates recovered from denture wearers were tested using 10% fetal bovine serum with or without 4% R. officinalis essential oil. Results The essential oil from R. officinalis completely inhibited germ tube formation in the investigated C. albicans isolates. Conclusions The results demonstrate that the essential oil of R. officinalis modulates C. albicans pathogenicity through its primary virulence factor (i.e., germ tube formation was suppressed).
Resumo:
Fields of murundus (FM) are wetlands that provide numerous ecosystem services. The objectives of this study were to evaluate the chemical [organic carbon (OC), P, K+, Ca2+, Mg2+, Al3+ and H+Al] and physical [texture and bulk density (Bd)] soil attributes and calculate the organic matter (OM) and nutrient stock (P, Ca, Mg, and K) in soils of FM located in the Guapore River basin in Mato Grosso. Thirty-six sampling points were selected, and soil samples were collected from two environments: the murundu and plain area surrounding (PAS). At each sampling point, mini trenches of 0.5 × 0.5 × 0.4 m were opened and disturbed and undisturbed soil samples were collected at depths of 0-0.1, 0.1-0.2, and 0.2-0.4 m. In the Principal Component Analysis the variables H+Al (49%) and OM (4%) were associated with the F1 component and sand content (47%) with the F2 component. The FM had lower pH values and higher concentrations of K+, P, and H+Al than PAS at all depths (p < 0.05). Additionally, FM stocked up to 433, 360, 205, and 11 kg ha-1 of Ca, Mg, K, and P, respectively, for up to a depth of 0.2 m. The murundu stored two times more K and three times more P than that in the PAS. Our results show that the FM has high sand content and Bd greater than 1.5 Mg m-3, high acidity, low OC content, and low nutrient concentrations. Thus, special care must be taken to preserve FM such that human intervention does not trigger environmental imbalances.
Resumo:
The organic and inorganic forms of soil nitrogen and how they participate in the process of fixation, immobilization and mineralization of ammonium in soils were evaluated, after different periods of incubaton, utilizing two soils, a Lithic Haplustoll and a Typic Eutrorthox. The results obtained permit to suggest that : 1) The method for determination of the ammonium fixing capacity based on the extraction with 2N KC1, is considered to be subject to interferences of other soil fractions capable of retaining ammonium. 2) The increase in exchangeable ammonium content is related to the decrease in amino acids and hydrolyzable ammonium. 3) The immobilization and mineralization processes are still held under mil microbial. The forms more affected by this condition are amino acids and hydrolyzable ammonium.
Resumo:
Parasite differentiation from proliferating tachyzoites into latent bradyzoites is central to pathogenesis and transmission of the intracellular protozoan pathogen Toxoplasma gondii. The presence of bradyzoite-containing cysts in human hosts and their subsequent rupture can cause life-threatening recrudescence of acute infection in the immunocompromised and cyst formation in other animals contributes to zoonotic transmission and widespread dissemination of the parasite. In this review, we discuss the evidence showing how the clinically relevant process of bradyzoite differentiation is regulated at both transcriptional and post-transcriptional levels. Specific regulatory factors implicated in modulating bradyzoite differentiation include promoter-based cis-elements, epigenetic modifications and protein translation control through eukaryotic initiation factor -2 (eIF2). In addition to a summary of the current state of knowledge in these areas we discuss the pharmacological ramifications and pose some questions for future research.
Resumo:
Malaria remains a major world health problem following the emergence and spread of Plasmodium falciparum that is resistant to the majority of antimalarial drugs. This problem has since been aggravated by a decreased sensitivity of Plasmodium vivax to chloroquine. This review discusses strategies for evaluating the antimalarial activity of new compounds in vitro and in animal models ranging from conventional tests to the latest high-throughput screening technologies. Antimalarial discovery approaches include the following: the discovery of antimalarials from natural sources, chemical modifications of existing antimalarials, the development of hybrid compounds, testing of commercially available drugs that have been approved for human use for other diseases and molecular modelling using virtual screening technology and docking. Using these approaches, thousands of new drugs with known molecular specificity and active against P. falciparum have been selected. The inhibition of haemozoin formation in vitro, an indirect test that does not require P. falciparum cultures, has been described and this test is believed to improve antimalarial drug discovery. Clinical trials conducted with new funds from international agencies and the participation of several industries committed to the eradication of malaria should accelerate the discovery of drugs that are as effective as artemisinin derivatives, thus providing new hope for the control of malaria.
Resumo:
To cope with oxidative stress, Candida albicans possesses several enzymes involved in a number of biological processes, including superoxide dismutases (Sods) and glutaredoxins (Grxs). The resistance of C. albicans to reactive oxygen species is thought to act as a virulence factor. Genes such as SOD1 and GRX2, which encode for a Sod and Grx, respectively, in C. albicans are widely recognised to be important for pathogenesis. We generated a double mutant, Δgrx2/sod1, for both genes. This strain is very defective in hyphae formation and is susceptible to killing by neutrophils. When exposed to two compounds that generate reactive oxygen species, the double null mutant was susceptible to menadione and resistant to diamide. The reintegration of the SOD1 gene in the null mutant led to recovery in resistance to menadione, whereas reintegration of the GRX2 gene made the null mutant sensitive to diamide. Despite having two different roles in the responses to oxidative stress generated by chemical compounds, GRX2 and SOD1 are important for C. albicans pathogenesis because the double mutant Δgrx2/sod1 was very susceptible to neutrophil killing and was defective in hyphae formation in addition to having a lower virulence in an animal model of systemic infection.
Resumo:
Haemophilus influenzae belongs to respiratory tract microbiota. We observed vacuoles formation in previous studies with H. influenzae culture supernatants, so in this work we characterised that cytotoxic effect. We observed an abundant production of acidic cytoplasmic vacuoles due to the presence of a “vacuolating factor” in H. influenzae supernatants which was characterised as thermolabile. Greatest vacuolating activity was observed when utilizing the fraction > 50 kDa. The presence of a large number of vacuoles in HEp-2 cells was verified by transmission electron microscopy and some vacuoles were identified with a double membrane and/or being surrounded by ribosomes. These results suggest similar behaviour to that of vacuolating effects described by autotransporter proteins an undescribed cytotoxic effect induced by H. influenzae .