77 resultados para Chloride-ions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of several ions (Cl-, Na+, K+, Ca2+) on the rate of plasminogen (Pg) activation by recombinant staphylokinase (rSTA) is reported. Both monovalent and divalent ions affect the rate at which Pg is activated by rSTA, in a concentration-dependent manner (range 0-100 mM). In almost all cases, a decrease of the initial velocity of activation was observed. Cl- showed the most striking inhibitory effect at low concentrations (64% at 10 mM). However, in the presence of a fibrin surface, this inhibition was attenuated to 38%. Surprisingly, 10 mM Ca2+ enhanced the Pg activation rate 21% when a polymerized fibrin matrix was present. These data support the idea that ions can modulate the rate of Pg activation through a mechanism that may be associated with changes in the molecular conformation of the zymogen. This effect is strongly dependent on the presence of a fibrin clot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the central nervous system, magnesium ion (Mg2+) acts as an endogenous modulator of N-methyl-D-aspartate (NMDA)-coupled calcium channels, and may play a major role in the pathomechanisms of ischemic brain damage. In the present study, we investigated the effects of magnesium chloride (MgCl2, 2.5, 5.0 or 7.5 mmol/kg), either alone or in combination with diazepam (DZ), on ischemia-induced hippocampal cell death. Male Wistar rats (250-300 g) were subjected to transient forebrain ischemia for 15 min using the 4-vessel occlusion model. MgCl2 was applied systemically (sc) in single (1x, 2 h post-ischemia) or multiple doses (4x, 1, 2, 24 and 48 h post-ischemia). DZ was always given twice, at 1 and 2 h post-ischemia. Thus, ischemia-subjected rats were assigned to one of the following treatments: vehicle (0.1 ml/kg, N = 34), DZ (10 mg/kg, N = 24), MgCl2 (2.5 mmol/kg, N = 10), MgCl2 (5.0 mmol/kg, N = 17), MgCl2 (7.5 mmol/kg, N = 9) or MgCl2 (5 mmol/kg) + DZ (10 mg/kg, N = 14). Seven days after ischemia the brains were analyzed histologically. Fifteen minutes of ischemia caused massive pyramidal cell loss in the subiculum (90.3%) and CA1 (88.4%) sectors of the hippocampus (P<0.0001, vehicle vs sham). Compared to the vehicle-treated group, all pharmacological treatments failed to attenuate the ischemia-induced death of both subiculum (lesion: 86.7-93.4%) and CA1 (lesion: 85.5-91.2%) pyramidal cells (P>0.05). Both DZ alone and DZ + MgCl2 reduced rectal temperature significantly (P<0.05). No animal death was observed after drug treatment. These data indicate that exogenous magnesium, when administered systemically post-ischemia even in different multiple dose schedules, alone or with diazepam, is not useful against the histopathological effects of transient global cerebral ischemia in rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypocitraturia (HCit) is one of the most remarkable features of renal tubular acidosis, but an acidification defect is not seen in the majority of hypocitraturic patients, whose disease is denoted idiopathic hypocitraturia. In order to assess the integrity of urinary acidification mechanisms in hypocitraturic idiopathic calcium stone formers, we studied two groups of patients, hypocitraturic (HCit, N = 21, 39.5 ± 11.5 years, 11 females and 10 males) and normocitraturic (NCit, N = 23, 40.2 ± 11.7 years, 16 females and 7 males) subjects, during a short ammonium chloride loading test lasting 8 h. During the baseline period HCit patients showed significantly higher levels of titratable acid (TA). After the administration of ammonium chloride, mean urinary pH (3rd to 8th hour) and TA and ammonium excretion did not differ significantly between groups. Conversely, during the first hour mean urinary pH was lower and TA and ammonium excretion was higher in HCit. The enhanced TA excretion by HCit during the baseline period and during the first hour suggests that the phosphate buffer mechanism is activated. The earlier response in ammonium excretion by HCit further supports other evidence that acidification mechanisms react promptly. The present results suggest that in the course of lithiasic disease, hypocitraturia coexists with subtle changes in the excretion of hydrogen ions in basal situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nephrolithiasis is one of the most common diseases in the Western world. The disease manifests itself with intensive pain, sporadic infections, and, sometimes, renal failure. The symptoms are due to the appearance of urinary stones (calculi) which are formed mainly by calcium salts. These calcium salts precipitate in the renal papillae and/or within the collecting ducts. Inherited forms of nephrolithiasis related to chromosome X (X-linked hypercalciuric nephrolithiasis or XLN) have been recently described. Hypercalciuria, nephrocalcinosis, and male predominance are the major characteristics of these diseases. The gene responsible for the XLN forms of kidney stones was cloned and characterized as a chloride channel called ClC-5. The ClC-5 chloride channel belongs to a superfamily of voltage-gated chloride channels, whose physiological roles are not completely understood. The objective of the present review is to identify recent advances in the molecular pathology of nephrolithiasis, with emphasis on XLN. We also try to establish a link between a chloride channel like ClC-5, hypercalciuria, failure in urine acidification and protein endocytosis, which could explain the symptoms exhibited by XLN patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A close relationship exists between calcium concentration in the central nervous system and nociceptive processing. Aminoglycoside antibiotics and magnesium interact with N- and P/Q-type voltage-operated calcium channels. In the present study we compare the antinociceptive potency of intrathecal administration of aminoglycoside antibiotics and magnesium chloride in the tail-flick test and on incisional pain in rats, taken as models of phasic and persistent post-surgical pain, respectively. The order of potency in the tail-flick test was gentamicin (ED50 = 3.34 µg; confidence limits 2.65 and 4.2) > streptomycin (5.68 µg; 3.76 and 8.57) = neomycin (9.22 µg; 6.98 and 12.17) > magnesium (19.49 µg; 11.46 and 33.13). The order of potency to reduce incisional pain was gentamicin (ED50 = 2.06 µg; confidence limits 1.46 and 2.9) > streptomycin (47.86 µg; 26.3 and 87.1) = neomycin (83.17 µg; 51.6 and 133.9). The dose-response curves for each test did not deviate significantly from parallelism. We conclude that neomycin and streptomycin are more potent against phasic pain than against persistent pain, whereas gentamicin is equipotent against both types of pain. Magnesium was less potent than the antibiotics and effective in the tail-flick test only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mercury is a xenobiotic metal that is a highly deleterious environmental pollutant. The biotransformation of mercury chloride (HgCl2) into methylmercury chloride (CH3HgCl) in aquatic environments is well-known and humans are exposed by consumption of contaminated fish, shellfish and algae. The objective of the present study was to determine the changes induced in vitro by two mercury compounds (HgCl2 and CH3HgCl) in cultured human lymphocytes. Short-term human leukocyte cultures from 10 healthy donors (5 females and 5 males) were set-up by adding drops of whole blood in complete medium. Cultures were separately and simultaneously treated with low doses (0.1 to 1000 µg/l) of HgCl2 and CH3HgCl and incubated at 37ºC for 48 h. Genotoxicity was assessed by chromosome aberrations and polyploid cells. Mitotic index was used as a measure of cytotoxicity. A significant increase (P < 0.05) in the relative frequency of chromosome aberrations was observed for all concentrations of CH3HgCl when compared to control, whether alone or in an evident sinergistic combination with HgCl2. The frequency of polyploid cells was also significantly increased (P < 0.05) when compared to control after exposure to all concentrations of CH3HgCl alone or in combination with HgCl2. CH3HgCl significantly decreased (P < 0.05) the mitotic index at 100 and 1000 µg/l alone, and at 1, 10, 100, and 1000 µg/l when combined with HgCl2, showing a synergistic cytotoxic effect. Our data showed that low concentrations of CH3HgCl might be cytotoxic/genotoxic. Such effects may indicate early cellular changes with possible biological consequences and should be considered in the preliminary evaluation of the risks of populations exposed in vivo to low doses of mercury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To quantify the effects of methylmercury (MeHg) on amacrine and on ON-bipolar cells in the retina, experiments were performed in MeHg-exposed groups of adult trahiras (Hoplias malabaricus) at two dose levels (2 and 6 µg/g, ip). The retinas of test and control groups were processed by mouse anti-parvalbumin and rabbit anti-alphaprotein kinase C (alphaPKC) immunocytochemistry. Morphology and soma location in the inner nuclear layer were used to identify immunoreactive parvalbumin (PV-IR) and alphaPKC (alphaPKC-IR) in wholemount preparations. Cell density, topography and isodensity maps were estimated using confocal images. PV-IR was detected in amacrine cells in the inner nuclear layer and in displaced amacrine cells from the ganglion cell layer, and alphaPKC-IR was detected in ON-bipolar cells. The MeHg-treated group (6 µg/g) showed significant reduction of the ON-bipolar alphaPKC-IR cell density (mean density = 1306 ± 393 cells/mm²) compared to control (1886 ± 892 cells/mm²; P < 0.001). The mean densities found for amacrine PV-IR cells in MeHg-treated retinas were 1040 ± 56 cells/mm² (2 µg/g) and 845 ± 82 cells/mm² (6 µg/g), also lower than control (1312 ± 31 cells/mm²; P < 0.05), differently from the data observed in displaced PV-IR amacrine cells. These results show that MeHg changed the PV-IR amacrine cell density in a dose-dependent way, and reduced the density of alphaKC-IR bipolar cells at the dose of 6 µg/g. Further studies are needed to identify the physiological impact of these findings on visual function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study was designed to evaluate the time course changes in peripheral markers of oxidative stress in a chronic HgCl2 intoxication model. Twenty male adult Wistar rats were treated subcutaneously daily for 30 days and divided into two groups of 10 animals each: Hg, which received HgCl2 (0.16 mg kg-1 day-1), and control, receiving the same volume of saline solution. Blood was collected at the first, second and fourth weeks of Hg administration to evaluate lipid peroxidation (LPO), total radical trapping antioxidant potential (TRAP), and superoxide dismutase (Cu,Zn-SOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and catalase (CAT). HgCl2 administration induced a rise (by 26%) in LPO compared to control (143 ± 10 cps/mg hemoglobin) in the second week and no difference was found at the end of the treatment. At that time, GST and GPx were higher (14 and 24%, respectively) in the Hg group, and Cu,Zn-SOD was lower (54%) compared to control. At the end of the treatment, Cu,Zn-SOD and CAT were higher (43 and 10%, respectively) in the Hg group compared to control (4.6 ± 0.3 U/mg protein; 37 ± 0.9 pmol/mg protein, respectively). TRAP was lower (69%) in the first week compared to control (43.8 ± 1.9 mM Trolox). These data provide evidence that HgCl2 administration is accompanied by systemic oxidative damage in the initial phase of the process, which leads to adaptive changes in the antioxidant reserve, thus decreasing the oxidative injury at the end of 30 days of HgCl2 administration. These results suggest that a preventive treatment with antioxidants would help to avoid oxidative damage in subjects with chronic intoxication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currents mediated by calcium-activated chloride channels (CaCCs), observed for the first time in Xenopus oocytes, have been recorded in many cells and tissues ranging from different types of neurons to epithelial and muscle cells. CaCCs play a role in the regulation of excitability in neurons including sensory receptors. In addition, they are crucial mediators of chloride movements in epithelial cells where their activity regulates electrolyte and fluid transport. The roles of CaCCs, particularly in epithelia, are briefly reviewed with emphasis on their function in secretory epithelia. The recent identification by three independent groups, using different strategies, of TMEM16A as the molecular counterpart of the CaCC is discussed. TMEM16A is part of a family that has 10 other members in mice. The discovery of the potential TMEM16 anion channel activity opens the way for the molecular investigation of the role of these anion channels in specific cells and in organ physiology and pathophysiology. The identification of TMEM16A protein as a CaCC chloride channel molecule represents a great triumph of scientific perseverance and ingenuity. The varied approaches used by the three independent research groups also augur well for the solidity of the discovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperchloremia is one of the multiple etiologies of metabolic acidosis in hemodialysis (HD) patients. The aim of the present study was to determine the influence of chloride dialysate on metabolic acidosis control in this population. We enrolled 30 patients in maintenance HD program with a standard base excess (SBE) ≤2 mEq/L and urine output of less than 100 mL/24 h. The patients underwent dialysis three times per week with a chloride dialysate concentration of 111 mEq/L for 4 weeks, and thereafter with a chloride dialysate concentration of 107 mEq/L for the next 4 weeks. Arterial blood was drawn immediately before the second dialysis session of the week at the end of each phase, and the Stewart physicochemical approach was applied. The strong ion gap (SIG) decreased (from 7.5 ± 2.0 to 6.2 ± 1.9 mEq/L, P = 0.006) and the standard base excess (SBE) increased after the use of 107 mEq/L chloride dialysate (from -6.64 ± 1.7 to -4.73 ± 1.9 mEq/L, P < 0.0001). ∆SBE was inversely correlated with ∆SIG during the phases of the study (Pearson r = -0.684, P < 0.0001) and there was no correlation with ∆chloride. When we applied the Stewart model, we demonstrated that the lower concentration of chloride dialysate interfered with the control of metabolic acidosis in HD patients, surprisingly, through the effect on unmeasured anions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibacterial monomers incorporated in dentin bonding systems may have toxic effects on the pulp. Thus, the cytotoxicity of antibacterial monomers and its underlying mechanisms must be elucidated to improve the safety of antibacterial monomer application. The influence of an antibacterial monomer, methacryloxylethyl cetyl ammonium chloride (DMAE-CB), on the vitality of L929 mouse fibroblasts was tested using MTT assay. Cell cycle progression was studied using flow cytometry. Production of intracellular reactive oxygen species (ROS) after DMAE-CB treatment was measured using 2,7-dichlorodihydrofluorescein diacetate staining and flow cytometry analysis. Loss of mitochondrial membrane potential, disturbance of Bcl-2 and Bax expression, as well as release of cytochrome C were also measured using flow cytometry analysis or Western blot to explore the possible involvement of the mitochondrial-related apoptotic pathway. DMAE-CB elicited cell death in a dose-dependent manner and more than 50% of cells were killed after treatment with 30 µM of the monomer. Both necrosis and apoptosis were observed. DMAE-CB also induced G1- and G2-phase arrest. Increased levels of intracellular ROS were observed after 1 h and this overproduction was further enhanced by 6-h treatment with the monomer. DMAE-CB may cause apoptosis by disturbing the expression of Bcl-2 and Bax, reducing the mitochondrial potential and inducing release of cytochrome C. Taken together, these findings suggest that the toxicity of the antibacterial monomer DMAE-CB is associated with ROS production, mitochondrial dysfunction, cell cycle disturbance, and cell apoptosis/necrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sodium alginate needs the presence of calcium ions to gelify. For this reason, the contribution of the calcium source in a fish muscle mince added by sodium alginate, makes gelification possible, resulting a restructured fish product. The three different calcium sources considered were: Calcium Chloride (CC); Calcium Caseinate (CCa); and Calcium lactate (CLa). Several physical properties were analyzed, including mechanical properties, colour and cooking loss. Response Surface Methodology (RSM) was used to determine the contribution of different calcium sources to a restructured fish muscle. The calcium source that modifies the system the most is CC. A combination of CC and sodium alginate weakened mechanical properties as reflected in the negative linear contribution of sodium alginate. Moreover, CC by itself increased lightness and cooking loss. The mechanical properties of restructured fish muscle elaborated were enhanced by using CCa and sodium alginate, as reflected in the negative linear contribution of sodium alginate. Also, CCa increased cooking loss. The role of CLa combined with sodium alginate was not so pronounced in the system discussed here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to evaluate the physicochemical and microbiological parameters of pork meat submitted to dry salting. Sodium chloride (NaCl) was added at levels of 0%, 2.5%, 5%, 7.5% or 10% by the meat weight. Dry salting technique was used, which consists of rubbing the sodium chloride manually, followed by a rest period. The data were submitted to analysis of variance using a completely randomized experimental design. The means were compared by Duncan test at 5%. The salting process reduced (P < 0.05) humidity and water activity, and it increased (P < 0.05) ash, chloride, palmitic acid, and water holding capacity levels compared to those of the control. Luminosity (L*) was lower (P < 0.05) in the control, and a* color was more intense in samples with 2.5% NaCl. Cooking loss was lower (P < 0.05) in the samples salted with 5% and 10% NaCl, and similarity was observed between the levels 0 and 7.5% salt. The treatments with levels 0% and 2.5% NaCl had higher mesophilic counts. The other microbiological parameters were within limits established by law. Therefore, salting with 5% NaCl can be used in pork meat in order to maintain the physicochemical and microbiological characteristics of the final product.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of sodium chloride reduction and its substitution for micronized salt on consumer acceptance of turkey ham was investigated. Five formulations - F1 (control - 2.0% NaCl), F2 (1.7% NaCl), F3 (1.4% NaCl), F4 (1.7% micronized NaCl), and F5 (1.4% micronized NaCl) - were evaluated with respect to sodium chloride content and by consumers using a nine-point hedonic scale for overall acceptability and CATA (check-all-that-apply) using 24 sensory descriptors. Trained panelists characterized the products using the flash profiling technique. Reductions in the salt content by up to 30% did not affect the overall acceptability of the samples by the consumers. However, the consumers characterized the formulations with lower salt content as "less salty and less seasoned" in comparison to the contents in the control. Products containing 1.7% NaCl were considered very similar to the control. The results obtained indicate that it is possible to reduce NaCl content by 30% without affecting consumer acceptance of the product. The use of micronized salt did not affect the sensory characteristics when compared with those of formulations containing the same level of sodium chloride indicating that micronized salt does not influence perception of salt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Red wines from different countries have been assessed in order to determine the influence of terroir and grape variety in their concentration of chloride. Chloride analysis was carried out by Laboratório de Bebidas de Origem Vegetal do Espírito Santo (Labeves), using the potentiometric method, in which the dosing is directly applied to the sample with an Ag/AgCl electrode. Data were collected to establish the level of chloride, as presented in the analysis reports issued by Labeves, and to serve as a wine categorization database, according to grape variety and country of origin. Australia and Argentina presented the highest levels of chloride and the wines made from the Syrah variety presented the highest concentration of such ion. We have, therefore, found that terroir and grape variety do have an influence over the concentration of chloride in red wines.