66 resultados para Cell-surface Changes
Resumo:
Phosphatidylserine (PS) exposure occurs during the cell death program and fluorescein-labeled lactadherin permits the detection of PS exposure earlier than annexin V in suspended cell lines. Adherent cell lines were studied for this apoptosis-associated phenomenon to determine if PS probing methods are reliable because specific membrane damage may occur during harvesting. Apoptosis was induced in the human tongue squamous carcinoma cell line (Tca8113) and the adenoid cystic carcinoma cell line (ACC-2) by arsenic trioxide. Cells were harvested with a modified procedure and labeled with lactadherin and/or annexin V. PS exposure was localized by confocal microscopy and apoptosis was quantified by flow cytometry. The detachment procedure without trypsinization did not induce cell damage. In competition binding experiments, phospholipid vesicles competed for more than 95 and 90% of lactadherin but only about 75 and 70% of annexin V binding to Tca8113 and ACC-2 cells. These data indicate that PS exposure occurs in three stages during the cell death program and that fluorescein-labeled lactadherin permitted the detection of early PS exposure. A similar pattern of PS exposure has been observed in two malignant cell lines with different adherence, suggesting that this pattern of PS exposure is common in adherent cells. Both lactadherin and annexin V could be used in adherent Tca8113 and ACC-2 cell lines when an appropriate harvesting procedure was used. Lactadherin is more sensitive than annexin V for the detection of PS exposure as the physical structure of PS in these blebs and condensed apoptotic cell surface may be more conducive to binding lactadherin than annexin V.
Resumo:
Candida albicans is an opportunistic fungal pathogen that causes severe systemic infections in immunosuppressed individuals. C. albicans resistance to antifungal drugs is a severe problem in patients receiving prolonged therapy. Moreover, trailing yeast growth, which is defined as a resistant MIC after 48 h of incubation with triazole antifungal agents but a susceptible MIC after 24 h, has been noted in tests of antifungal susceptibility against some C. albicans isolates. In this context, we recently noticed this phenomenon in our routine susceptibility tests with fluconazole/itraconazole and C. albicans clinical isolates. In the present study, we investigated the production of cell-associated and secreted aspartyl peptidases (Saps) in six trailing clinical isolates of C. albicans, since this class of hydrolytic enzymes is a well-known virulence factor expressed by this fungal pathogen. Sap2, which is the best-studied member of the Sap family, was detected by flow cytometry on the cell surface of yeasts and as a 43-kDa polypeptide in the culture supernatant, as demonstrated by Western blotting assay using an anti-Sap1-3 polyclonal antibody. Released aspartyl peptidase activity was measured with BSA hydrolysis and inhibited by pepstatin A, showing distinct amounts of proteolytic activity ranging from 5.7 (strain 44B) to 133.2 (strain 11) arbitrary units. Taken together, our results showed that trailing clinical isolates of C. albicans produced different amounts of both cellular and secreted aspartyl-type peptidases, suggesting that this phenotypic feature did not generate a regular pattern regarding the expression of Sap.
Resumo:
Recent studies have reported that exogenous gangliosides, the sialic acid-containing glycosphingolipids, are able to modulate many cellular functions. We examined the effect of micelles of mono- and trisialoganglioside GM1 and GT1b on the production of reactive oxygen species by stimulated human polymorphonuclear neutrophils using different spectroscopic methods. The results indicated that exogenous gangliosides did not influence extracellular superoxide anion (O2.-) generation by polymorphonuclear neutrophils activated by receptor-dependent formyl-methionyl-leucyl-phenylalanine. However, when neutrophils were stimulated by receptor-bypassing phorbol 12-myristate 13-acetate (PMA), gangliosides above their critical micellar concentrations prolonged the lag time preceding the production in a concentration-dependent way, without affecting total extracellular O2.- generation detected by superoxide dismutase-inhibitable cytochrome c reduction. The effect of ganglioside GT1b (100 µM) on the increase in lag time was shown to be significant by means of both superoxide dismutase-inhibitable cytochrome c reduction assay and electron paramagnetic resonance spectroscopy (P < 0.0001 and P < 0.005, respectively). The observed phenomena can be attributed to the ability of ganglioside micelles attached to the cell surface to slow down PMA uptake, thus increasing the diffusion barrier and consequently delaying membrane events responsible for PMA-stimulated O2.- production.
Resumo:
Major histocompatibility complex class I chain-related A (MICA) is a highly polymorphic gene located within the MHC class I region of the human genome. Expressed as a cell surface glycoprotein, MICA modulates immune surveillance by binding to its cognate receptor on natural killer cells, NKG2D, and its genetic polymorphisms have been recently associated with susceptibility to some infectious diseases. We determined whether MICA polymorphisms were associated with the high rate of Schistosoma parasitic worm infection or severity of disease outcome in the Dongting Lake region of Hunan Province, China. Polymerase chain reaction-sequence specific priming (PCR-SSP) and sequencing-based typing (SBT) were applied for high-resolution allele typing of schistosomiasis cases (N = 103, age range = 36.2-80.5 years, 64 males and 39 females) and healthy controls (N = 141, age range = 28.6-73.3 years, 73 males and 68 females). Fourteen MICA alleles and five short-tandem repeat (STR) alleles were identified among the two populations. Three (MICA*012:01/02, MICA*017 and MICA*027) showed a higher frequency in healthy controls than in schistosomiasis patients, but the difference was not significantly correlated with susceptibility to S. japonicum infection (Pc > 0.05). In contrast, higher MICA*A5 allele frequency was significantly correlated with advanced liver fibrosis (Pc < 0.05). Furthermore, the distribution profile of MICA alleles in this Hunan Han population was significantly different from those published for Korean, Thai, American-Caucasian, and Afro-American populations (P < 0.01), but similar to other Han populations within China (P > 0.05). This study provides the initial evidence that MICA genetic polymorphisms may underlie the severity of liver fibrosis occurring in schistosomiasis patients from the Dongting Lake region.
Resumo:
The adhesins of extraintestinal pathogenic Escherichia coli are essential for mediating direct interactions between the microbes and the host cell surfaces that they infect. Using fluorescence microscopy and gentamycin protection assays, we observed that 49 sepsis-associated E. coli (SEPEC) strains isolated from human adults adhered to and invaded Vero cells in the presence of D-mannose (100%). In addition, bacteria concentrations of approximately 2 x 10(7) CFU/mL were recovered from Vero cells following an invasion assay. Furthermore, PCR analysis of adhesin genes showed that 98.0% of these SEPEC strains tested positive for fimH, 69.4% for flu, 53.1% for csgA, 38.8% for mat, and 32.7% for iha. Analysis of the invasin genes showed that 16.3% of the SEPEC strains were positive for tia, 12.3% for gimB, and 10.2% for ibeA. Therefore, these data suggest that SEPEC adhesion to cell surfaces occurs through non-fimH mechanisms. Scanning electron microscopy showed the formation of microcolonies on the Vero cell surface. SEPEC invasiveness was also confirmed by the presence of intracellular bacteria, and ultrastructural analysis using electron transmission microscopy revealed bacteria inside the Vero cells. Taken together, these results demonstrate that these SEPEC strains had the ability to adhere to and invade Vero cells. Moreover, these data support the theory that renal cells may be the predominant pathway through which SEPEC enters human blood vessels.
Resumo:
The present study screened potential genes related to lung adenocarcinoma, with the aim of further understanding disease pathogenesis. The GSE2514 dataset including 20 lung adenocarcinoma and 19 adjacent normal tissue samples from 10 patients with lung adenocarcinoma aged 45-73 years was downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs) between the two groups were screened using the t-test. Potential gene functions were predicted using functional and pathway enrichment analysis, and protein-protein interaction (PPI) networks obtained from the STRING database were constructed with Cytoscape. Module analysis of PPI networks was performed through MCODE in Cytoscape. In total, 535 upregulated and 465 downregulated DEGs were identified. These included ATP5D, UQCRC2, UQCR11 and genes encoding nicotinamide adenine dinucleotide (NADH), which are mainly associated with mitochondrial ATP synthesis coupled electron transport, and which were enriched in the oxidative phosphorylation pathway. Other DEGs were associated with DNA replication (PRIM1, MCM3, and RNASEH2A), cell surface receptor-linked signal transduction and the enzyme-linked receptor protein signaling pathway (MAPK1, STAT3, RAF1, and JAK1), and regulation of the cytoskeleton and phosphatidylinositol signaling system (PIP5K1B, PIP5K1C, and PIP4K2B). Our findings suggest that DEGs encoding subunits of NADH, PRIM1, MCM3, MAPK1, STAT3, RAF1, and JAK1 might be associated with the development of lung adenocarcinoma.