80 resultados para CATIONIC SURFACTANTS
Resumo:
Omega-3 enriched partial acylglycerols are beneficial for human health. The aim of this study was to obtain monoacylglycerols (MAG) and diacylglycerols (DAG) by means of glycerolysis of fish oil catalyzed by a lipase from Rhizomucor miehei in the presence of food grade surfactants (Tween 65, 80 or 85). Glycerolysis was successful in the reaction media for all the tested surfactants, showing their potential for use as additives in such a system. The best results, however, were obtained for the reaction medium in the absence of surfactant whose peroxide value was the lowest after glycerolysis.
Resumo:
Four new compounds with the general formula [Fe(phen)3][Zn(RSO2N=CS2)2], where phen = 1,10-phenanthroline, R = 4-FC6H4 (1), 4-ClC6H4 (2), 4-BrC6H4 (3) and 4-IC6H4 (4), respectively, were obtained by the reaction of the appropriate potassium N-R-sulfonyldithiocarbimate (RSO2N=CS2K2) and tris(1,10-phenanthroline)iron(II) sulfate, with zinc(II) acetate dihydrate in dimethylformamide. The elemental analyses and the IR data were consistent with the formation of the expected complexes salts. The ¹H and 13C NMR spectra showed the signals for the cationic iron(II) complex and dithiocarbimate moieties. The molar conductance data were consistent with the 1:1 cation:anion complexes in 1-4. The antifungal activities of the compounds were tested in vitro against Candida albicans, Candida tropicalis and Colletotrichum gloeosporioides.
Resumo:
The sea surface microlayer (SML), although poorly understood, is important in biogeochemical cycling and sea - air exchanges; it is a source or a sink for a range of pollutants. In this paper, an overview of sampling techniques and the role of SML in biogeochemical cycles and climate is presented. The chemical and biological nature of the ocean surface film and its interaction with atmospheric aerosols are discussed. Special attention is given to organic constituents, gel-like compounds, surfactants, halogenated compounds, and metals. Estimates of air - sea exchange fluxes-with focus on organic carbon, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls-are compiled. In addition, research gaps in the chemical composition of marine aerosols and their relationship with SML are described.
Resumo:
In the present work, a simple and rapid ligand-less, in situ, surfactant-based solid phase extraction for the preconcentration of copper in water samples was developed. In this method, a cationic surfactant (n-dodecyltrimethylammonium bromide) was dissolved in an aqueous sample followed by the addition of an appropriate ion-pairing agent (ClO4-). Due to the interaction between the surfactant and ion-pairing agent, solid particles were formed and subsequently used for the adsorption of Cu(OH)2 and CuI. After centrifugation, the sediment was dissolved in 1.0 mL of 1 mol L-1 HNO3 in ethanol and aspirated directly into the flame atomic absorption spectrometer. In order to obtain the optimum conditions, several parameters affecting the performance of the LL-ISS-SPE, including the volumes of DTAB, KClO4, and KI, pH, and potentially interfering ions, were optimized. It was found that KI and phosphate buffer solution (pH = 9) could extract more than 95% of copper ions. The amount of copper ions in the water samples varied from 3.2 to 4.8 ng mL-1, with relative standard deviations of 98.5%-103%. The determination of copper in water samples was linear over a concentration range of 0.5-200.0 ng mL-1. The limit of detection (3Sb/m) was 0.1 ng mL-1 with an enrichment factor of 38.7. The accuracy of the developed method was verified by the determination of copper in two certified reference materials, producing satisfactory results.
Resumo:
In this work, we studied the reactivity of picloram in the aqueous phase at the B3LYP/6-311++G(2d,2p) and MP2/6-311++G(2d,2p) levels of theory through global and local reactivity descriptors. The results obtained at the MP2 level indicate that the cationic form of picloram exhibits the highest hardness while the anionic form is the most nucleophilic. From the Fukui function values, the most reactive site for electrophilic and free radical attacks are on the nitrogen in the pyridine ring. The more reactive sites for nucleophilic attacks are located on the nitrogen atom of the amide group and on the carbon atoms located at positions 2 and 3 in the pyridine ring.
Resumo:
Soft nanoparticles of size 200-400 nm were obtained from soybean protein isolate (SPI). The particles were formed and suspended in water by the coacervation of aqueous suspensions of SPI in hostile buffered aqueous solutions in the presence of surfactants. We investigate the effect of storage, ionic strength, and concentrations of SPI and surfactant on nanoparticle size and zeta potential. Transmission electron microscopy images and scattering techniques (SLS/ DLS) revealed that the particles are spherical, with hydrophilic chains at the surface.
Resumo:
Presently, the world depends on a wide variety of new materials based on organofluorine compounds. These compounds can be used as surfactants, high resistance polymers, liquid crystals, agrochemicals, radiopharmaceuticals for positron emission tomography, and drugs. However, the selective formation of C–F bonds remains a challenge. This study reviews our knowledge of organofluorine compounds and describes conventional and modern selective fluorination methods for obtaining these compounds. Here, we highlight the most common fluorination reagents and describe the fluorination reactions. This review is organized by the type of fluorine transfer: nucleophilic, electrophilic, and enzymatic
Resumo:
This work presents the synthesis of silicas containing cetyltrialkylammoniun surfactants in their mesopores. Initially, the aqueous dispersions of these surfactants were characterized by small-angle X-ray scattering (SAXS). The hybrid silicas obtained from these dispersions were evaluated by X-ray diffractometry (XRD) and nitrogen physisorption. The XRD showed that, increasing the head size, there is a shift of the peak corresponding to the (100) diffraction plane to smaller 2θ angles, which indicates an increase in the silicas porous diameter. The increasing of the silicas porous diameter was confirmed by nitrogen physisorption. The base catalytic properties of these hybrid silicas were evaluated in the transesterification reaction showing that those containing the cations C16Et3+ and C16Pr3+ showed better performance.
Lanthanum based high surface area perovskite-type oxide and application in CO and propane combustion
Resumo:
The perovskite-type oxides using transition metals present a promising potential as catalysts in total oxidation reaction. The present work investigates the effect of synthesis by oxidant co-precipitation on the catalytic activity of perovskite-type oxides LaBO3 (B= Co, Ni, Mn) in total oxidation of propane and CO. The perovskite-type oxides were characterized by means of X-ray diffraction, nitrogen adsorption (BET method), thermo gravimetric and differential thermal analysis (ATG-DTA) and X-ray photoelectron spectroscopy (XPS). Through a method involving the oxidant co-precipitation it's possible to obtain catalysts with different BET surface areas, of 33-44 m²/g, according the salts of metal used. The characterization results proved that catalysts have a perovskite phase as well as lanthanum oxide, except LaMnO3, that presents a cationic vacancies and generation for known oxygen excess. The results of catalytic test showed that all oxides have a specific catalytic activity for total oxidation of CO and propane even though the temperatures for total conversion change for each transition metal and substance to be oxidized.
Resumo:
The reduction of pesticide spraying drift is still one of the major challenges in Brazilian agriculture. The aim of this study was to evaluate the potential of different adjuvant products, such as surfactants, drift retardants, mineral oil and vegetable oil for reducing drift in agricultural spraying. The experiment consisted of quantifying drift of sprayings of 18 adjuvants dissolved in water under controlled conditions in a wind tunnel. Tests were performed in triplicates with spraying nozzles type Teejet XR8003 VK, pressure of 200kPa and medium drops. Solutions sprayed were marked with Brilliant Blue dye at 0.6% (m v-1). The drift was collected using polyethylene strips transversally fixed along the tunnel at different distances from the nozzle and different heights from the bottom part of the tunnel. Drift deposits were evaluated by spectrophotometry in order to quantify deposits. The adjuvants from chemical groups of mineral oil and drift retardant resulted in lower values of drift in comparison with surfactants and water. The results obtained in laboratory show that the selection of appropriate class and concentration of adjuvants can significantly decrease the risk of drift in agricultural spraying. However, the best results obtained in laboratory should be validated with pesticide under field conditions in the future.
Resumo:
There is an increasing demand for detailed maps that represent in a simplified way the knowledge of the variability of a particular area or region maps. The objective was to outline precision boundaries among areas with different accuracy variability standards using magnetic susceptibility and geomorphic surfaces. The study was conducted in an area of 110 ha, which identified three compartment landscapes based on the geomorphic surfaces model. To determinate pH, organic matter, phosphorus, potassium and magnesium, the total sand and clay, 514 soil samples were collected at depths of 0-0.20 m and 0.60-0.80 m. The sum of base, cationic exchange capacity and base saturation were calculated and the magnetic susceptibility was evaluated in the laboratory using a system based on a balance of analytical precision method. Geomorphic surfaces identification allowed setting specific management areas (locations with maximum homogeneity of soil attributes). The map of spatial variability of magnetic susceptibility can be used to validate the precise boundaries among geomorphic surfaces identified in the field and infer the variability of clay content and soil base saturation.
Resumo:
The effect of urea on biomimetic aggregates (aqueous and reversed micelles, vesicles and monolayers) was investigated to obtain insights into the effect of the denaturant on structured macromolecules. Direct evidence obtained from light scattering (static and dynamic), monolayer maximum isothermal compression and ionic conductivity measurements, together with indirect evidence from fluorescence photodissociation, fluorescence suppression, and thermal reactions, strongly indicates the direct interaction mechanism of urea with the aggregates. Preferential solvation of the surfactant headgroups by urea results in an increase in the monomer dissociation degree (when applied), which leads to an increase in the area per headgroup and also in the loss of counterion affinities
Resumo:
Gene therapy is an active field that has progressed rapidly into clinical trials in a relatively short time. The key to success for any gene therapy strategy is to design a vector able to serve as a safe and efficient gene delivery vehicle. This has encouraged the development of nonviral DNA-mediated gene transfer techniques such as liposomes. Many liposome-based DNA delivery systems have been described, including molecular components for targeting given cell surface receptors or for escaping from the lysosomal compartment. Another recent technology using cationic lipids has been evaluated and has generated substantial interest in this approach to gene transfer.
Resumo:
It has been demonstrated that the alpha2 chain of laminin-2 present on the surface of Schwann cells is involved in the process of attachment of Mycobacterium leprae to these cells. Searching for M. leprae laminin-binding molecules, in a previous study we isolated and characterized the cationic proteins histone-like protein (Hlp) and ribosomal proteins S4 and S5 as potential adhesins involved in M. leprae-Schwann cell interaction. Hlp was shown to bind alpha2-laminins and to greatly enhance the attachment of mycobacteria to ST88-14 Schwann cells. In the present study, we investigated the laminin-binding capacity of the ribosomal proteins S4 and S5. The genes coding for these proteins were PCR amplified and their recombinant products were shown to bind alpha2-laminins in overlay assays. However, when tested in ELISA-based assays and in adhesion assays with ST88-14 cells, in contrast to Hlp, S4 and S5 failed to bind laminin and act as adhesins. The laminin-binding property and adhesin capacity of two basic host-derived proteins were also tested, and only histones, but not cytochrome c, were able to increase bacterial attachment to ST88-14 cells. Our data suggest that the alanine/lysine-rich sequences shared by Hlp and eukaryotic H1 histones might be involved in the binding of these cationic proteins to laminin.
The effect of porphyrins on normal and transformed mouse cell lines in the presence of visible light
Resumo:
Photodynamic therapy consists of the uptake of a photosensitizing dye, often a porphyrin, by tumor tissue and subsequent irradiation of the tumor with visible light of an appropriate wavelength matched to the absorption spectrum of the photosensitizing dye. This class of molecules produces reactive oxygen species when activated by light, resulting in a direct or indirect cytotoxic effect on the target cells. Photodynamic therapy has been used in the treatment of cancer but the technology has a potential for the treatment of several disease conditions mainly because of its selectivity. However, it is not clear why the porphyrins are retained preferentially by abnormal tissue. This paper describes a study of the effect of the association of porphyrin and visible light on two mouse fibroblast cell lines: A31, normal cells and B61, an EJ-ras transformed variant of A31. Two water-soluble porphyrins were used, a positively charged one, tetra(N-methyl-4-pyridyl)porphyrin chloride, and a negatively charged one, tetra(4-sulfonatophenyl)porphyrin-Na salt (TPPS4) in order to assess the effect on cell survival. The results suggest that the B61 cell line is more sensitive to incubation with the anionic porphyrin (TPPS4) followed by light irradiation and that the anionic porphyrin is more efficient in killing the cells than the cationic porphyrin.