66 resultados para Binary and ternary correlations
Resumo:
We determined whether ANP (atrial natriuretic peptide) concentrations, measured by radioimmunoassay, in the ANPergic cerebral regions involved in regulation of sodium intake and excretion and pituitary gland correlated with differences in sodium preference among 40 Wistar male rats (180-220 g). Sodium preference was measured as mean spontaneous ingestion of 1.5% NaCl solution during a test period of 12 days. The relevant tissues included the olfactory bulb (OB), the posterior and anterior lobes of the pituitary gland (PP and AP, respectively), the median eminence (ME), the medial basal hypothalamus (MBH), and the region anteroventral to the third ventricle (AV3V). We also measured ANP content in the right (RA) and left atrium (LA) and plasma. The concentrations of ANP in the OB and the AP were correlated with sodium ingestion during the preceding 24 h, since an increase of ANP in these structures was associated with a reduced ingestion and vice-versa (OB: r = -0.3649, P<0.05; AP: r = -0.3291, P<0.05). Moreover, the AP exhibited a correlation between ANP concentration and mean NaCl intake (r = -0.4165, P<0.05), but this was not the case for the OB (r = 0.2422). This suggests that differences in sodium preference among individual male rats can be related to variations of AP ANP level. Earlier studies indicated that the OB is involved in the control of NaCl ingestion. Our data suggest that the OB ANP level may play a role mainly in day-to-day variations of sodium ingestion in the individual rat
Resumo:
Few studies are available concerning correlations between pulse oximetry and peak expiratory flow in children and adolescents with acute asthma. Although the Global Initiative for Asthma states that measurements of lung function and oximetry are critical for the assessment of patients, it is not clear if both methods should necessarily be included in their evaluation. Since there is a significant difference in cost between pulse oximetry equipment and peak expiratory flow devices, we determined whether clinical findings and peak expiratory flow measurements are sufficient to determine the severity of acute asthma. The present prospective observational study was carried out to determine if there is correlation between pulse oximetry and peak expiratory flow determination in 196 patients with acute asthma aged 4 to 15 years diagnosed according to the Global Initiative for Asthma criteria. Patients experiencing their first or second wheezing episode, with fever, related acute or chronic diseases, and unable to perform the peak expiratory flow maneuver were excluded. Measurements of peak expiratory flow and pulse oximetry were performed at admission and after 15 min of each inhaled salbutamol cycle. Correlations obtained by linear regression using the Pearson correlation coefficients (r) were 0.41 (P < 0.0001), 0.53 (P < 0.0001), 0.51 (P < 0.0001), and 0.61 (P < 0.0001) at admission and after the first, second and third cycles of salbutamol, respectively. These correlations showed that one measure cannot substitute the other (Pearson's coefficient <0.7), probably because they evaluate different aspects in the airways, suggesting that peak expiratory flow should not be used alone in the assessment of acute asthma in children and adolescents.
Resumo:
The objective was to elucidate the relationships between serum concentrations of the gut hormone peptide YY (PYY) and ghrelin and growth development in infants for potential application to the clinical observation index. Serum concentrations of PYY and ghrelin were measured using radioimmunoassay from samples collected at the clinic. For each patient, gestational age, birth weight, time required to return to birth weight, rate of weight gain, time required to achieve recommended daily intake (RDI) standards, time required for full-gastric feeding, duration of hospitalization, and time of administration of total parenteral nutrition were recorded. Serum PYY and ghrelin concentrations were significantly higher in the preterm group (N = 20) than in the full-term group (N = 20; P < 0.01). Within the preterm infant group, the serum concentrations of PYY and ghrelin on postnatal day (PND) 7 (ghrelin = 1485.38 ± 409.24; PYY = 812.37 ± 153.77 ng/L) were significantly higher than on PND 1 (ghrelin = 956.85 ± 223.09; PYY = 545.27 ± 204.51 ng/L) or PND 3 (ghrelin = 1108.44 ± 351.36; PYY = 628.96 ± 235.63 ng/L; P < 0.01). Both serum PYY and ghrelin concentrations were negatively correlated with body weight, and the degree of correlation varied with age. Serum ghrelin concentration correlated negatively with birth weight and positively with the time required to achieve RDI (P < 0.05). In conclusion, serum PYY and ghrelin concentrations reflect a negative energy balance, predict postnatal growth, and enable compensation. Further studies are required to elucidate the precise concentration and roles of PYY and ghrelin in newborns and to determine the usefulness of measuring these hormones in clinical practice.
Resumo:
The aims of this study were to evaluate the forced oscillation technique (FOT) and pulmonary densitovolumetry in acromegalic patients and to examine the correlations between these findings. In this cross-sectional study, 29 non-smoking acromegalic patients and 17 paired controls were subjected to the FOT and quantification of lung volume using multidetector computed tomography (Q-MDCT). Compared with the controls, the acromegalic patients had a higher value for resonance frequency [15.3 (10.9-19.7) vs 11.4 (9.05-17.6) Hz, P=0.023] and a lower value for mean reactance [0.32 (0.21-0.64) vs 0.49 (0.34-0.96) cm H2O/L/s2, P=0.005]. In inspiratory Q-MDCT, the acromegalic patients had higher percentages of total lung volume (TLV) for nonaerated and poorly aerated areas [0.42% (0.30-0.51%) vs 0.25% (0.20-0.32%), P=0.039 and 3.25% (2.48-3.46%) vs 1.70% (1.45-2.15%), P=0.001, respectively]. Furthermore, the acromegalic patients had higher values for total lung mass in both inspiratory and expiratory Q-MDCT [821 (635-923) vs 696 (599-769) g, P=0.021 and 844 (650-945) vs 637 (536-736) g, P=0.009, respectively]. In inspiratory Q-MDCT, TLV showed significant correlations with all FOT parameters. The TLV of hyperaerated areas showed significant correlations with intercept resistance (rs=−0.602, P<0.001) and mean resistance (rs=−0.580, P<0.001). These data showed that acromegalic patients have increased amounts of lung tissue as well as nonaerated and poorly aerated areas. Functionally, there was a loss of homogeneity of the respiratory system. Moreover, there were correlations between the structural and functional findings of the respiratory system, consistent with the pathophysiology of the disease.
Resumo:
This study aimed to verify the association between the contribution of energy systems during an incremental exercise test (IET), pacing, and performance during a 10-km running time trial. Thirteen male recreational runners completed an incremental exercise test on a treadmill to determine the respiratory compensation point (RCP), maximal oxygen uptake (V˙O2max), peak treadmill speed (PTS), and energy systems contribution; and a 10-km running time trial (T10-km) to determine endurance performance. The fractions of the aerobic (WAER) and glycolytic (WGLYCOL) contributions were calculated for each stage based on the oxygen uptake and the oxygen energy equivalents derived by blood lactate accumulation, respectively. Total metabolic demand (WTOTAL) was the sum of these two energy systems. Endurance performance during the T10-km was moderately correlated with RCP, V˙O2maxand PTS (P<@0.05), and moderate-to-highly correlated with WAER, WGLYCOL, and WTOTAL (P<0.05). In addition, WAER, WGLYCOL, and WTOTAL were also significantly correlated with running speed in the middle (P<0.01) and final (P<0.01) sections of the T10-km. These findings suggest that the assessment of energy contribution during IET is potentially useful as an alternative variable in the evaluation of endurance runners, especially because of its relationship with specific parts of a long-distance race.
Resumo:
Milk and egg matrixes were assayed for aflatoxin M1 (AFM1) and B1 (AFB1) respectively, by AOAC official and modified methods with detection and quantification by thin layer chromatography (TLC) and high performance thin layer chromatography (HPTLC). The modified methods: Blanc followed by Romer, showed to be most appropriate for AFM1 analysis in milk. Both methods reduced emulsion formation, produced cleaner extracts, no streaking spots, precision and accuracy improved, especially when quantification was performed by HPTLC. The use of ternary mixture in the Blanc Method was advantageous as the solvent could extract AFM1 directly from the first stage (extraction), leaving other compounds in the binary mixture layer, avoiding emulsion formation, thus reducing toxin loss. The relative standard deviation (RSD%) values were low, 16 and 7% when TLC and HPTLC were used, with a mean recovery of 94 and 97%, respectively. As far as egg matrix and final extract are concerned, both methods evaluated for AFB1 need further studies. Although that matrix leads to emulsion with consequent loss of toxin, the Romer modified presented a reasonable clean extract (mean recovery of 92 and 96% for TLC and HPTLC, respectively). Most of the methods studied did not performed as expected mainly due to the matrixes high content of triglicerides (rich on saturated fatty acids), cholesterol, carotene and proteins. Although nowadays most methodology for AFM1 is based on HPLC, TLC determination (Blanc and Romer modified) for AFM1 and AFB1 is particularly recommended to those, inexperienced in food and feed mycotoxins analysis and especially who cannot afford to purchase sophisticated (HPLC,HPTLC) instrumentation.