116 resultados para Bacterial Pathogenesis
Resumo:
Oviposition attractants could be used for monitoring as well as controlling mosquitoes by attracting them to lay eggs at chosen sites. In the present study, culture filtrates of seven bacterial species were tested for their attractancy against gravid females of Culex quinquefasciatus. When their oviposition active indices (OAI) were studied, the culture filtrates of Bacillus cereus and Pseudomonas fluorescens exhibited oviposition attractancy (OAI = >0.3) at 100 ppm and the OAI were respectively 0.70 and 0.47. Culture filtrates of B. thuringiensis var. israelensis (wild type), B. t. var. israelensis (mutant) and B. sphaericus showed attractancy at 2000 ppm with OAI of respectively 0.71, 0.59 and 0.68. However, the OAI of B. megaterium as well as Azospirillum brasilense was 0.13 (at 2000 ppm), which was less than 0.3 required to be considered them as attractants. When the oviposition attractancy of the bacterial culture filtrates were compared with that of a known oviposition attractant, p-cresol (at 10 ppm), the culture filtrates of B. t. var. israelensis (wild type) and B. cereus were found to be more active than p-cresol, respectively with 64.2 and 54.3% oviposition.
Resumo:
Chagas disease, caused by the protozoan Trypanosoma cruzi, has a variable clinical course, ranging from symptomless infection to severe chronic disease with cardiovascular or gastrointestinal involvement or, occasionally, overwhelming acute episodes. The factors influencing this clinical variability have not been elucidated, but it is likely that the genetic variability of both the host and the parasite are of importance. In this work we review the the genetic structure of T. cruzi populations and analyze the importance of genetic variation of the parasite in the pathogenesis of the disease under the light of the histotropic-clonal model.
Resumo:
A prospective study of fungal and bacterial flora of burn wounds was carried out from February 2004 to February 2005 at the Burns Unit of Hospital Regional da Asa Norte, Brasília, Brazil. During the period of the study, 203 patients were treated at the Burns Unit. Wound swab cultures were assessed at weekly intervals for four weeks. Three hundred and fifty four sampling procedures (surface swabs) were performed from the burn wounds. The study revealed that bacterial colonization reached 86.6% within the first week. Although the gram-negative organisms, as a group, were more predominant, Staphylococcus aureus (28.4%) was the most prevalent organism in the first week. It was however surpassed by Pseudomonas aeruginosa form third week onwards. For S. aureus and P. aeruginosa vancomycin and polymyxin were found to be the most effective drugs. Most of the isolates showed high level resistance to antimicrobial agents. Fungi were found to colonize the burn wound late during the second week postburn, with a peak incidence during the third and fourth weeks. Species identification of fungi revealed that Candida tropicalis was the most predominant, followed by Candida parapsilosis. It is crucial for every burn institution to determine the specific pattern of burn wound microbial colonization, the time-related changes in the dominant flora, and the antimicrobial sensitivity profiles. This would enable early treatment of imminent septic episodes with proper empirical systemic antibiotics, without waiting for culture results, thus improving the overall infection-related morbidity and mortality.
Resumo:
Recent work has demonstrated that hyperglycemia-induced overproduction of superoxide by the mitochondrial electron-transport chain triggers several pathways of injury [(protein kinase C (PKC), hexosamine and polyol pathway fluxes, advanced glycation end product formation (AGE)] involved in the pathogenesis of diabetic complications by inhibiting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. Increased oxidative and nitrosative stress activates the nuclear enzyme, poly(ADP-ribose) polymerase-1 (PARP). PARP activation, on one hand, depletes its substrate, NAD+, slowing the rate of glycolysis, electron transport and ATP formation. On the other hand, PARP activation results in inhibition of GAPDH by poly-ADP-ribosylation. These processes result in acute endothelial dysfunction in diabetic blood vessels, which importantly contributes to the development of various diabetic complications. Accordingly, hyperglycemia-induced activation of PKC and AGE formation are prevented by inhibition of PARP activity. Furthermore, inhibition of PARP protects against diabetic cardiovascular dysfunction in rodent models of cardiomyopathy, nephropathy, neuropathy, and retinopathy. PARP activation is also present in microvasculature of human diabetic subjects. The present review focuses on the role of PARP in diabetic complications and emphasizes the therapeutic potential of PARP inhibition in the prevention or reversal of diabetic complications.
Resumo:
T lymphocyte-mediated pathogenesis is common to a variety of enteropathies, including giardiasis, cryptosporidiosis, bacterial enteritis, celiac's disease, food anaphylaxis, and Crohn's disease. In giardiasis as well as in these other disorders, a diffuse loss of microvillous brush border, combined or not with villus atrophy, is responsible for disaccharidase insufficiencies and malabsorption of electrolytes, nutrients, and water, which ultimately cause diarrheal symptoms. Other mucosal changes may include crypt hyperplasia and increased infiltration of intra-epithelial lymphocytes. Recent studies using models of giardiasis have shed new light on the immune regulation of these abnormalities. Indeed, experiments using an athymic mouse model of infection have found that these epithelial injuries were T cell-dependent. Findings from further research indicate that that the loss of brush border surface area, reduced disaccharidase activities, and increase crypt-villus ratios are mediated by CD8+ T cells, whereas both CD8+ and CD4+ small mesenteric lymph node T cells regulate the influx of intra-epithelial lymphocytes. Future investigations need to characterize the CD8+ T cell signaling cascades that ultimately lead to epithelial injury and malfunction in giardiasis and other malabsorptive disorders of the intestine.
Resumo:
Emerging resistance phenotypes and antimicrobial resistance rates among pathogens recovered from community-acquired urinary tract infections (CA-UTI) is an increasing problem in specific regions, limiting therapeutic options. As part of the SENTRY Antimicrobial Surveillance Program, a total of 611 isolates were collected in 2003 from patients with CA-UTI presenting at Latin American medical centers. Each strain was tested in a central laboratory using Clinical Laboratory Standard Institute (CLSI) broth microdilution methods with appropriate controls. Escherichia coli was the leading pathogen (66%), followed by Klebsiella spp. (7%), Proteus mirabilis (6.4%), Enterococcus spp. (5.6%), and Pseudomonas aeruginosa (4.6%). Surprisingly high resistance rates were recorded for E. coli against first-line orally administered agents for CA-UTI, such as ampicillin (53.6%), TMP/SMX (40.4%), ciprofloxacin (21.6%), and gatifloxacin (17.1%). Decreased susceptibility rates to TMP/SMX and ciprofloxacin were also documented for Klebsiella spp. (79.1 and 81.4%, respectively), and P. mirabilis (71.8 and 84.6%, respectively). For Enterococcus spp., susceptibility rates to ampicillin, chloramphenicol, ciprofloxacin, and vancomycin were 88.2, 85.3, 55.9, and 97.1%, respectively. High-level resistance to gentamicin was detected in 24% of Enterococcus spp. Bacteria isolated from patients with CA-UTI in Latin America showed limited susceptibility to orally administered antimicrobials, especially for TMP/SMX and fluoroquinolones. Our results highlight the need for developing specific CA-UTI guidelines in geographic regions where elevated resistance to new and old compounds may influence prescribing decisions.
Resumo:
To provide a novel resource for analysis of the genome of Biomphalaria glabrata, members of the international Biomphalaria glabrata Genome Initiative (biology.unm.edu/biomphalaria-genome.html), working with the Arizona Genomics Institute (AGI) and supported by the National Human Genome Research Institute (NHGRI), produced a high quality bacterial artificial chromosome (BAC) library. The BB02 strain B. glabrata, a field isolate (Belo Horizonte, Minas Gerais, Brasil) that is susceptible to several strains of Schistosoma mansoni, was selfed for two generations to reduce haplotype diversity in the offspring. High molecular weight DNA was isolated from ovotestes of 40 snails, partially digested with HindIII, and ligated into pAGIBAC1 vector. The resulting B. glabrata BAC library (BG_BBa) consists of 61824 clones (136.3 kb average insert size) and provides 9.05 × coverage of the 931 Mb genome. Probing with single/low copy number genes from B. glabrata and fingerprinting of selected BAC clones indicated that the BAC library sufficiently represents the gene complement. BAC end sequence data (514 reads, 299860 nt) indicated that the genome of B. glabrata contains ~ 63% AT, and disclosed several novel genes, transposable elements, and groups of high frequency sequence elements. This BG_BBa BAC library, available from AGI at cost to the research community, gains in relevance because BB02 strain B. glabrata is targeted whole genome sequencing by NHGRI.
Resumo:
Population-based data on sexually transmitted infections (STI), bacterial vaginosis (BV), and candidiasis reflect the epidemiological situation more accurately than studies performed in specific populations, but such data are scarce. To determine the prevalence of STI, BV, and candidiasis among women of reproductive age from a resource-poor community in Northeast Brazil, a population-based cross sectional study was undertaken. All women from seven hamlets and the centre of Pacoti municipality in the state of Ceará, aged 12 to 49 years, were invited to participate. The women were asked about socio-demographic characteristics and genital symptoms, and thereafter examined gynaecologically. Laboratory testing included polymerase chain reaction (PCR) for human papillomavirus (HPV), ligase chain reaction (LCR) for Chlamydia trachomatis and Neisseria gonorrhoeae, ELISA for human immunodeficiency virus (HIV), venereal disease research laboratory (VDRL) and fluorescent treponema antibody absorption test (FTA-ABS) for syphilis, and analysis of wet mounts, gram stains and Pap smears for trichomoniasis, candidiasis, and BV. Only women who had initiated sexual life were included in the analysis (n = 592). The prevalences of STI were: HPV 11.7% (95% confidence interval: 9.3-14.7), chlamydia 4.5% (3.0-6.6), trichomoniasis 4.1% (2.7-6.1), gonorrhoea 1.2% (0.5-2.6), syphilis 0.2% (0.0-1.1), and HIV 0%. The prevalence of BV and candidiasis was 20% (16.9-23.6) and 12.5% (10.0-15.5), respectively. The most common gynaecological complaint was lower abdominal pain. STI are common in women in rural Brazil and represent an important health threat in view of the HIV pandemic.
Resumo:
The biology, epidemiology, pathogenesis, diagnostic techniques, and history of the introduction of Trypanosoma (Duttonella) vivax in the New World are reviewed. The two main immunological responses of trypanosome-infected animals - antibody production and immunodepression - are discussed in the context of how these responses play a role in disease tolerance or susceptibility. Isolation and purification of T. vivax are briefly discussed. The recent reports of bovine trypanosomiasis diagnosed in cattle on farms located in the Pantanal region of the states of Mato Grosso do Sul and Mato Grosso, Brazil, are also discussed.
Resumo:
Most patients with acute suppurative meningitis are otherwise healthy individuals with regard to immune mechanisms against invasive bacterial disease. This medical emergency is among the most dramatic and potentially ravaging diseases that affect humans, particularly young children. The illness often strikes suddenly, and can either result in death or leave the survivors with significant neurological dysfunctions. The demonstration of a bacterial aetiology is necessary for decisions regarding treatment and prophylaxis. Conventional bacteriological methods frequently fail to identify an agent, as a result of administration of antibiotics or delayed lumbar punctures. We investigated the major aetiologic sources of unspecified bacterial meningitis cases (G00.9, ISCD-10) by polymerase chain reaction (PCR)-based identification of Neisseria meningitidis (crgA), Streptococcus pneumoniae (ply) and Haemophilus influenzae (bexA) in cerebrospinal fluid samples. The multiplex PCR detected N. meningitidis in 92%, S. pneumoniae in 4% and H. influenzae in 1% of the 192 clinical samples assayed; 3% were negative for all three DNA targets. Bacterial DNA detection was found to be a valuable adjunct to enhance bacterial meningitis surveillance when the yield of specimens by culture is reduced. The implementation of PCR assays as a diagnostic procedure in Public Health Laboratories is perceived to be a significant advance in the investigation of bacterial meningitis.
Resumo:
Parasite differentiation from proliferating tachyzoites into latent bradyzoites is central to pathogenesis and transmission of the intracellular protozoan pathogen Toxoplasma gondii. The presence of bradyzoite-containing cysts in human hosts and their subsequent rupture can cause life-threatening recrudescence of acute infection in the immunocompromised and cyst formation in other animals contributes to zoonotic transmission and widespread dissemination of the parasite. In this review, we discuss the evidence showing how the clinically relevant process of bradyzoite differentiation is regulated at both transcriptional and post-transcriptional levels. Specific regulatory factors implicated in modulating bradyzoite differentiation include promoter-based cis-elements, epigenetic modifications and protein translation control through eukaryotic initiation factor -2 (eIF2). In addition to a summary of the current state of knowledge in these areas we discuss the pharmacological ramifications and pose some questions for future research.
Resumo:
Chronic cardiopathy (CC) in Chagas disease is a fibrotic myocarditis with C5b-9 complement deposition. Mycoplasma and Chlamydia may interfere with the complement response. Proteolytic enzymes and archaeal genes that have been described in Trypanosoma cruzi may increase its virulence. Here we tested the hypothesis that different ratios of Mycoplasma, Chlamydia and archaeal organisms, which are frequent symbionts, may be associated with chagasic clinical forms. MATERIALS AND METHODS: eight indeterminate form (IF) and 20 CC chagasic endomyocardial biopsies were submitted to in situ hybridization, electron and immunoelectron microscopy and PCR techniques for detection of Mycoplasma pneumoniae (MP), Chlamydia pneumoniae(CP), C5b-9 and archaeal-like bodies. RESULTS: MP and CP-DNA were always present at lower levels in CC than in IF (p < 0.001) and were correlated with each other only in CC. Electron microscopy revealed Mycoplasma, Chlamydia and two types of archaeal-like bodies. One had electron dense lipid content (EDL) and was mainly present in IF. The other had electron lucent content (ELC) and was mainly present in CC. In this group, ELC correlated negatively with the other microbes and EDL and positively with C5b-9. The CC group was positive for Archaea and T. cruzi DNA. In conclusion, different amounts of Mycoplasma, Chlamydia and archaeal organisms may be implicated in complement activation and may have a role in Chagas disease outcome.
Resumo:
The pathogenesis of Chagas disease cardiomyopathy (CCC) is not well understood. Since studies show that myocarditis is more frequent during the advanced stages of the disease, and the prognosis of CCC is worse than that of other dilated cardiomyopathies of non-inflammatory aetiology, which suggest that the inflammatory infiltrate plays a major role in myocardial damage. In the last decade, increasing evidence has shown that inflammatory cytokines and chemokines play a role in the generation of the inflammatory infiltrate and tissue damage. CCC patients have an increased peripheral production of the inflammatory Th1 cytokines IFN-³ and TNF-± when compared to patients with the asymptomatic/indeterminate form. Moreover, Th1-T cells are the main producers of IFN-³ and TNF-± and are frequently found in CCC myocardial inflammatory infiltrate. Over the past several years, our group has collected evidence that shows several cytokines and chemokines produced in the CCC myocardium may also have a non-immunological pathogenic effect via modulation of gene and protein expression in cardiomyocytes and other myocardial cell types. Furthermore, genetic polymorphisms of cytokine, chemokine and innate immune response genes have been associated with disease progression. We will review the molecular and immunological mechanisms of myocardial damage in human CCC in light of recent findings.
Resumo:
Enteroinvasive Escherichia coli (EIEC) and Shigellaspp cause bacillary dysentery in humans by invading and multiplying within epithelial cells of the colonic mucosa. Although EIEC and Shigellashare many genetic and biochemical similarities, the illness caused by Shigellais more severe. Thus, genomic and structure-function molecular studies on the biological interactions of these invasive enterobacteria with eukaryotic cells have focused on Shigella rather than EIEC. Here we comparatively studied the interactions of EIEC and of Shigella flexneriwith cultured J774 macrophage-like cells. We evaluated several phenotypes: (i) bacterial escape from macrophages after phagocytosis, (ii) macrophage death induced by EIEC and S. flexneri, (iii) macrophage cytokine expression in response to infection and (iv) expression of plasmidial (pINV) virulence genes. The results showed thatS. flexneri caused macrophage killing earlier and more intensely than EIEC. Both pathogens induced significant macrophage production of TNF, IL-1 and IL-10 after 7 h of infection. Transcription levels of the gene invasion plasmid antigen-C were lower in EIEC than in S. flexneri throughout the course of the infection; this could explain the diminished virulence of EIEC compared to S. flexneri.
Resumo:
Corynebacterium pseudodiphtheriticum is a well-known human pathogen that mainly causes respiratory disease and is associated with high mortality in compromised hosts. Little is known about the virulence factors and pathogenesis of C. pseudodiphtheriticum. In this study, cultured human epithelial (HEp-2) cells were used to analyse the adherence pattern, internalisation and intracellular survival of the ATCC 10700 type strain and two additional clinical isolates. These microorganisms exhibited an aggregative adherence-like pattern to HEp-2 cells characterised by clumps of bacteria with a "stacked-brick" appearance. The differences in the ability of these microorganisms to invade and survive within HEp-2 cells and replicate in the extracellular environment up to 24 h post infection were evaluated. The fluorescent actin staining test demonstrated that actin polymerisation is involved in the internalisation of the C. pseudodiphtheriticum strains. The depolymerisation of microfilaments by cytochalasin E significantly reduced the internalisation of C. pseudodiphtheriticum by HEp-2 cells. Bacterial internalisation and cytoskeletal rearrangement seemed to be partially triggered by the activation of tyrosine kinase activity. Although C. pseudodiphtheriticum strains did not demonstrate an ability to replicate intracellularly, HEp-2 cells were unable to fully clear the pathogen within 24 h. These characteristics may explain how some C. pseudodiphtheriticum strains cause severe infection in human patients.