68 resultados para BTemporal Lobe Epilepsycopa monnieri
Resumo:
The relevance of the relationship between cardiac disease and depressive symptoms is well established. White matter hyperintensity, a bright signal area in the brain on T2-weighted magnetic resonance imaging scans, has been separately associated with cardiovascular risk factors, cardiac disease and late-life depression. However, no study has directly investigated the association between heart failure, major depressive symptoms and the presence of hyperintensities. Using a visual assessment scale, we have investigated the frequency and severity of white matter hyperintensities identified by magnetic resonance imaging in eight patients with late-life depression and heart failure, ten patients with heart failure without depression, and fourteen healthy elderly volunteers. Since the frontal lobe has been the proposed site for the preferential location of white matter hyperintensities in patients with late-life depression, we focused our investigation specifically on this brain region. Although there were no significant group differences in white matter hyperintensities in the frontal region, a significant direct correlation emerged between the severity of frontal periventricular white matter hyperintensity and scores on the Hamilton scale for depression in the group with heart failure and depression (P = 0.016, controlled for the confounding influence of age). There were no significant findings in any other areas of the brain. This pattern of results adds support to a relationship between cardiovascular risk factors and depressive symptoms, and provides preliminary evidence that the presence of white matter hyperintensities specifically in frontal regions may contribute to the severity of depressive symptoms in cardiac disease.
Resumo:
The thalamus is an important modulator of seizures and is severely affected in cholinergic models of epilepsy. In the present study, chronically epileptic rats had their brains processed for neo-Timm and acetylcholinesterase two months after the induction of status epilepticus with pilocarpine. Both controls and pilocarpine-treated animals presented neo-Timm staining in the anterodorsal nucleus, laterodorsal nucleus, reticular nucleus, most intralaminar nuclei, nucleus reuniens, and rhomboid nucleus of the thalamus, as well as in the zona incerta. The intensity of neo-Timm staining was similar in control and pilocarpine-treated rats, except for the nucleus reuniens and the rhomboid nucleus, which had a lower intensity of staining in the epileptic group. In animal models of temporal lobe epilepsy, zinc seems to modulate glutamate release and to decrease seizure activity. In this context, a reduction of neo-Timm-stained terminals in the midline thalamus could ultimately result in an increased excitatory activity, not only within its related nuclei, but also in anatomical structures that receive their efferent connections. This might contribute to the pathological substrate observed in chronic pilocarpine-treated epileptic animals.
Resumo:
Costimulatory and antigen-presenting molecules are essential to the initiation of T cell immunity to mycobacteria. The present study analyzed by immunocytochemistry, using monoclonal antibodies and alkaline phosphatase-anti-alkaline phosphatase method, the frequency of costimulatory (CD86, CD40, CD40L, CD28, and CD152) and antigen-presenting (MHC class II and CD1) molecules expression on human lung cells recovered by sputum induction from tuberculosis (TB) patients (N = 22) and non-TB controls (N = 17). TB cases showed a statistically significant lower percentage of HLA-DR+ cells than control subjects (21.9 ± 4.2 vs 50.0 ± 7.2%, P < 0.001), even though similar proportions of TB cases (18/22) and control subjects (16/17, P = 0.36) had HLA-DR-positive-stained cells. In addition, fewer TB cases (10/22) compared to control subjects (16/17) possessed CD86-expressing cells (P = 0.04; OR: 0.05; 95%CI = 0.00-0.51), and TB cases expressed a lower percentage of CD86+ cells (P = 0.04). Moreover, TB patients with clinically limited disease (£1 lobe) on chest X-ray exhibited a lower percentage of CD86-bearing cells compared to patients with more extensive lung disease (>1 lobe) (P = 0.02). The lower expression by lung cells from TB patients of HLA-DR and CD86, molecules involved in antigen presentation and activation of T cells, may minimize T cell recognition of Mycobacterium tuberculosis, fostering an immune dysfunctional state and active TB.
Resumo:
Intrahippocampal administration of kainic acid (KA) induces synaptic release of neurotrophins, mainly brain-derived neurotrophic factor, which contributes to the acute neuronal excitation produced by the toxin. Two protein tyrosine kinase inhibitors, herbimycin A and K252a, were administered intracerebroventricularly, in a single dose, to attenuate neurotrophin signaling during the acute effects of KA, and their role in epileptogenesis was evaluated in adult, male Wistar rats weighing 250-300 g. The latency for the first Racine stage V seizure was 90 ± 8 min in saline controls (N = 4) which increased to 369 ± 71 and 322 ± 63 min in animals receiving herbimycin A (1.74 nmol, N = 4) and K252a (10 pmol, N = 4), respectively. Behavioral alterations were accompanied by diminished duration of EEG paroxysms in herbimycin A- and K252a-treated animals. Notwithstanding the reduction in seizure severity, cell death (60-90% of cell loss in KA-treated animals) in limbic regions was unchanged by herbimycin A and K252a. However, aberrant mossy fiber sprouting was significantly reduced in the ipsilateral dorsal hippocampus of K252a-treated animals. In this model of temporal lobe epilepsy, both protein kinase inhibitors diminished the acute epileptic activity triggered by KA and the ensuing morphological alterations in the dentate gyrus without diminishing cell loss. Our current data indicating that K252a, but not herbimycin, has an influence over KA-induced mossy fiber sprouting further suggest that protein tyrosine kinase receptors are not the only factors which control this plasticity. Further experiments are necessary to elucidate the exact signaling systems associated with this K252a effect.
Resumo:
Zygomycosis is an infection caused by opportunistic fungi of the Zygomycetes class, specifically those from the Mucorales and Entomophthorales orders. It is an uncommon disease, mainly restricted to immunocompromised patients. We report a case of a 73-year-old male patient with a history of fever (39°C) lasting for 1 day, accompanied by shivering, trembling, and intense asthenia. The patient was admitted to the intensive care unit with complex partial seizures, and submitted to orotracheal intubation and mechanical ventilation under sedation with midazolam. The electroencephalogram showed evidence of non-convulsive status epilepticus. There is no fast specific laboratory test that permits confirmation of invasive fungal disease. Unless the physician suspects this condition, the disease may progress rapidly while the patient is treated with broad-spectrum antibiotics. Differential diagnosis between fungal and bacterial infection is often difficult. The clinical presentation is sometimes atypical, and etiological investigation is not always successful. In the present case, the histopathological examination of the biopsy obtained from the right temporal lobe indicated the presence of irregular, round, thick-walled fungi forming papillae and elongated structures of irregular diameter, with no septa, indicative of zygomycete (Basidiobolus). Treatment with liposomal amphotericin B and fluconazole was initiated after diagnosis of meningoencephalitis by zygomycete, with a successful outcome.
Resumo:
Searching for effective Smad3 gene-based gene therapies for hepatic fibrosis, we constructed siRNA expression plasmids targeting the rat Smad3 gene and then delivered these plasmids into hepatic stellate cells (HSCs). The effect of siRNAs on the mRNA levels of Smad2, Smad3, Smad4, and collagens I-α1, III-α1 and IV-α1 (Colα1, Col3α1, Col4α1, respectively) was determined by RT-PCR. Eighty adult male Sprague-Dawley rats were randomly divided into three groups. Twice a week for 8 weeks, the untreated hepatic fibrosis model (N = 30) and the treated group (N = 20) were injected subcutaneously with 40% (v/v) carbon tetrachloride (CCl4)-olive oil (3 mL/kg), and the normal control group (N = 30) was injected with olive oil (3 mL/kg). In the 4th week, the treated rats were injected subcutaneously with liposome-encapsulated plasmids (150 µg/kg) into the right liver lobe under general anesthesia once every 2 weeks, and the untreated rats were injected with the same volume of buffer. At the end of the 6th and 8th weeks, liver tissue and sera were collected. Pathological changes were assessed by a semi-quantitative scoring system (SSS), and a radioimmunoassay was used to establish a serum liver fibrosis index (type III procollagen, type IV collagen, laminin, and hyaluronic acid). The mRNA expression levels of the above cited genes were reduced in the HSCs transfected with the siRNA expression plasmids. Moreover, in the treated group, fibrosis evaluated by the SSS was significantly reduced (P < 0.05) and the serum indices were greatly improved (P < 0.01). These results suggest that Smad3 siRNA expression plasmids have an anti-fibrotic effect.
Resumo:
Previous cross-sectional magnetic resonance imaging (MRI) studies of healthy aging in young adults have indicated the presence of significant inverse correlations between age and gray matter volumes, although not homogeneously across all brain regions. However, such cross-sectional studies have important limitations and there is a scarcity of detailed longitudinal MRI studies with repeated measures obtained in the same individuals in order to investigate regional gray matter changes during short periods of time in non-elderly healthy adults. In the present study, 52 healthy young adults aged 18 to 50 years (27 males and 25 females) were followed with repeated MRI acquisitions over approximately 15 months. Gray matter volumes were compared between the two times using voxel-based morphometry, with the prediction that volume changes would be detectable in the frontal lobe, temporal neocortex and hippocampus. Voxel-wise analyses showed significant (P < 0.05, family-wise error corrected) relative volume reductions of gray matter in two small foci located in the right orbitofrontal cortex and left hippocampus. Separate comparisons for males and females showed bilateral gray matter relative reductions in the orbitofrontal cortex over time only in males. We conclude that, in non-elderly healthy adults, subtle gray matter volume alterations are detectable after short periods of time. This underscores the dynamic nature of gray matter changes in the brain during adult life, with regional volume reductions being detectable in brain regions that are relevant to cognitive and emotional processes.
Resumo:
The supraoptic nucleus (SON) is part of the central osmotic circuitry that synthesises the hormone vasopressin (Avp) and transports it to terminals in the posterior lobe of the pituitary. Following osmotic stress such as dehydration, this tissue undergoes morphological, electrical and transcriptional changes to facilitate the appropriate regulation and release of Avp into the circulation where it conserves water at the level of the kidney. Here, the organisation of the whole transcriptome following dehydration is modelled to fit Zipf's law, a natural power law that holds true for all natural languages, that states if the frequency of word usage is plotted against its rank, then the log linear regression of this is -1. We have applied this model to our previously published euhydrated and dehydrated SON data to observe this trend and how it changes following dehydration. In accordance with other studies, our whole transcriptome data fit well with this model in the euhydrated SON microarrays, but interestingly, fit better in the dehydrated arrays. This trend was observed in a subset of differentially regulated genes and also following network reconstruction using a third-party database that mines public data. We make use of language as a metaphor that helps us philosophise about the role of the whole transcriptome in providing a suitable environment for the delivery of Avp following a survival threat like dehydration.