86 resultados para Anionic Surfactants
Resumo:
An analytical method by liquid chromatography has been proposed and validated to study the apparent solubility of ibuprofen in biorelevant dissolution media. The main properties of the studied media were pH values of 5.0 and 6.5 and the presence or absence of some natural surfactant agents. The parameters evaluated were specificity, linearity, precision, accuracy, and detection and quantification limits, as well as the drug stability under the analysis conditions. The developed method was useful to determine the apparent solubility of this drug as a function of temperature and surfactants concentration to demonstrate the validity of the Biopharmaceutics Classification System.
Determinação do ponto de névoa em surfactantes não iônicos por espectroscopia de impedância elétrica
Resumo:
In this paper, we analyze the use of electrical impedance spectroscopy applied to determination of cloud point. The slope of admittance measured at 100 kHz is reduced to temperature above the critical value which characterizes the phase transition, in a strong indication that this process is activated during the clouding. Additionally to this study we explored the influence of parameters such as additives and temperature on the performance of phase separation of residues (silver nanoparticles) by cloud point extraction. The interaction with salt maximizes the separation of chemical residues in a progressively reduced temperature.
Resumo:
Solid lipid nanoparticles (SLN), nanoemulsions (NE), and microemulsions (ME) were prepared by the hot solvent diffusion method, using tristearin or castor oil as oily phase, and soy lecithin and Solutol HS 15 as surfactants. Mean particle sizes ranged from 20 to 215 nm and negative zeta potentials were obtained for all nanocarriers. A HPLC method used to determine resveratrol was specific, linear, exact and precise. The entrapment efficiency was high for all formulations. However, resveratrol content was significantly varied among the lipid nanocarriers. Lipid nanocarrier containing hydrogels exhibiting pseudoplastic behavior were obtained after incorporation of hydroxyethylcellulose in the colloidal dispersions.
Resumo:
The major applications of organoclays are in adsorption of organic polluents. The objective of this work was the synthesis and characterization of organoclays using differents amounts of cationic surfactant hexadecyltrimethylammonium bromide. The clays were characterized by low angle x-ray diffraction (XRD), scanning electron microscope (SEM), infrared with Fourier tranformation (FTIR), BET surface area, elemental analysis (CHN), Foster swell and adsorption of methylene blue. The surfactant can adsorb in differents forms in the interlamelar region changed the basal spacing. The presence of the surfactant adsorbed can be favorable or not in adsorption of the methylene blue due the different interactions dye-organoclays.
Resumo:
An optical chemical sensor for the determination of nitrite based on incorporating methyltrioctylammonium chloride as an anionic exchanger on the triacetylcellulose polymer has been reported. The response of the sensor is based on the redox reaction between nitrite in aqueous solution and iodide adsorbed on sensing membrane using anion exchange phenomena. The sensing membrane reversibly responses to nitrite ion over the range of 6.52×10-6 - 8.70×10-5 mol L-1 with a detection limit of 6.05×10-7 mol L-1 (0.03 µg mL-1) and response time of 6 min. The relative standard deviation for eight replicate measurements of 8.70×10-6 and 4.34×10-5 mol L-1 of nitrite was 4.4 and 2.5 %, respectively. The sensor was successfully applied for determination of nitrite in food, saliva and water samples.
Resumo:
The use of fatty acids (FAs) as amphiphiles is very important because they have a behaving similar to surfactants. The formulation for the preferential partition of these species was studied by varying the amount of salt at constant acid concentration. As the salt concentration increases, a Winsor I→III→II transition is observed for all the systems studied. Furthermore, the electrolyte concentration required to obtain the optimum formulation varies inversely with the chain length of the acid. The partition coefficient of the surfactant allows one to obtain thermodynamic information on the acid transfer process between the phases of the system.
Resumo:
In this work, theospheres (innovative lipid nanoparticles) were prepared by the high pressure homogenization technique using different surfactants for dapsone encapsulation. Mean particle size ranged from 105 to 153 nm and negative zeta potentials were obtained for all theosphere formulations. Atomic force microscopy images confirmed the spherical shape of theospheres. The HPLC method used to determine dapsone-loaded theospheres was selective, linear, exact and precise. The entrapment efficiency of dapsone was 91.4%. Theospheres provided controlled release of idebenone (52.7 ± 1.6%) in comparison to the free drug (103.1 ± 1.9%).
Resumo:
The dispersion of carbon nanotubes in water for their utilization in nanoscale devices is a challenging task. Comparative studies on interaction and dispersion of multi-wall carbon nanotubes (MWNT) using two different surfactants (sodium dodecyl sulfate, SDS, and polyoxyethylenesorbitanmonooleate, Tween 80) are presented. The interaction between carbon nanotubes and surfactants was studied by tensiometry, conductivimetry, and fluorimetry. The dispersions of MWNT in surfactants were characterized using a UV-vis spectrophotometer. For effective dispersion, the minimum weight ratio of MWNT to surfactant was 1:41 and 1:3 for SDS and Tween 80, respectively.
Stability-indicating comparative methods using mekc and lc for determination of olmesartan medoxomil
Resumo:
A stability-indicating method using MEKC was validated for the analysis of olmesartan medoxomil in tablets. Successful separation was achieved using a fused silica capillary (40 cm x 50 µm i.d.); background electrolyte consisted of a combination of 10 mmol L-1 borate buffer and 5 mmol L-1 anionic detergent sodium dodecyl sulfate (95:5; v/v) pH 6.5; hydrodynamic mode at 50 mBar for 5 s; 25 kV separation voltage at 25 ºC; and column temperature 25 ºC with detection at 257 nm. The proposed method, validated following ICH guidelines, was applied to the determination of this antihypertensive with good results compared with an LC method.
Resumo:
Omega-3 enriched partial acylglycerols are beneficial for human health. The aim of this study was to obtain monoacylglycerols (MAG) and diacylglycerols (DAG) by means of glycerolysis of fish oil catalyzed by a lipase from Rhizomucor miehei in the presence of food grade surfactants (Tween 65, 80 or 85). Glycerolysis was successful in the reaction media for all the tested surfactants, showing their potential for use as additives in such a system. The best results, however, were obtained for the reaction medium in the absence of surfactant whose peroxide value was the lowest after glycerolysis.
Resumo:
In this work, hydrotalcite, a layered double hydroxide, had its ion exchange properties combined with the magnetic properties of iron oxide to produce a magnetic adsorbent, HT-Fe 500. These magnetic composites can be used as adsorbents for anionic contaminants in water and subsequently removed from the medium by a simple magnetic process. Removal of chromium (VI) from aqueous solutions using HT-Fe 500 was achieved using batch adsorption experiments. The adsorption capacity, calculated with the Langmuir-Freundlich model showed to be dependent on temperature, reaching values of 25.93 and 48.31 mg g-1, respectively, for temperatures of 25 and 30 ºC.
Resumo:
Phase transition and viscosity behavior of emulsified systems were studied after modifying their physicochemical formulation. Effects of concentration and nature of salts and n-alcohols, and water/oil relation on the rheological properties of emulsions were also studied. Pre-equilibrated systems were emulsified according to an agitation procedure, and the viscosity (cP) was measured at different shear rates ranging from 1 to 300 s-1. The phase behavior, as well as the emulsion type based on electrolytic conductivity, was observed. Several interpretations of the flow and viscosity curves of emulsions were made through the estimation of rheological parameters such as consistency index "k" and behavior index "n".
Resumo:
The sea surface microlayer (SML), although poorly understood, is important in biogeochemical cycling and sea - air exchanges; it is a source or a sink for a range of pollutants. In this paper, an overview of sampling techniques and the role of SML in biogeochemical cycles and climate is presented. The chemical and biological nature of the ocean surface film and its interaction with atmospheric aerosols are discussed. Special attention is given to organic constituents, gel-like compounds, surfactants, halogenated compounds, and metals. Estimates of air - sea exchange fluxes-with focus on organic carbon, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls-are compiled. In addition, research gaps in the chemical composition of marine aerosols and their relationship with SML are described.
Resumo:
In this work, we studied the reactivity of picloram in the aqueous phase at the B3LYP/6-311++G(2d,2p) and MP2/6-311++G(2d,2p) levels of theory through global and local reactivity descriptors. The results obtained at the MP2 level indicate that the cationic form of picloram exhibits the highest hardness while the anionic form is the most nucleophilic. From the Fukui function values, the most reactive site for electrophilic and free radical attacks are on the nitrogen in the pyridine ring. The more reactive sites for nucleophilic attacks are located on the nitrogen atom of the amide group and on the carbon atoms located at positions 2 and 3 in the pyridine ring.
Resumo:
Soft nanoparticles of size 200-400 nm were obtained from soybean protein isolate (SPI). The particles were formed and suspended in water by the coacervation of aqueous suspensions of SPI in hostile buffered aqueous solutions in the presence of surfactants. We investigate the effect of storage, ionic strength, and concentrations of SPI and surfactant on nanoparticle size and zeta potential. Transmission electron microscopy images and scattering techniques (SLS/ DLS) revealed that the particles are spherical, with hydrophilic chains at the surface.