116 resultados para Amount concentration (molecules in cells), of phosphorylated Janus Activated Kinase 2
Resumo:
The production of interleukin 2 (IL-2) by peripheral blood mononuclear cells, from patients with different clinical forms of Chagas disease and healthy controls, was evaluated after stimulation with Trypanosoma cruzi antigen, PPD and PHA. PHA induced higher production of IL-2 in infected patients than healthy controls. No diferences were found between infected groups. With PPD the trend was similar, the only difference was that asymptomatic infected patients (INF) showed higher levels of IL-2 production than patients with cardiomyopathy (CDM). With T. cruzi antigen, most patients showed little or no IL-2 production at 24 hr, a peak at 48 hr and an abrupt fall at 72 hr. A similar pattern of IL- 2 production was observed in INF and CDM. To evaluate the physiologic relevance of the deficit in IL-2 production, we studied the effect of non-mitogenic concentratios of IL-2 in the proliferative response to specific antigens. The addition of IL-2 only enhanced the proliferative response of CDM patients. These observations suggest that patients suffering Chagas' disease, particularly CDM, have a significant reduction in the capacity to produce IL-2. These findings could be of importance in the pathogenesis of Chagas' disease.
Resumo:
Eosinophils play a central role in the establishment and outcome of bronchial inflammation in asthma. Animal models of allergy are useful to answer questions related to mechanisms of allergic inflammation. We have used models of sensitized and boosted guinea pigs to investigate the nature of bronchial inflammation in allergic conditions. These animals develop marked bronchial infiltration composed mainly of CD4+ T-lymphocytes and eosinophils. Further provocation with antigen leads to degranulation of eosinophils and ulceration of the bronchial mucosa. Eosinophils are the first cells to increase in numbers in the mucosa after antigen challenge and depend on the expression of alpha 4 integrin to adhere to the vascular endothelium and transmigrate to the mucosa. Blockage of alpha4 integrin expression with specific antibody prevents not only the transmigration of eosinophils but also the development of bronchial hyperresponsiveness (BHR) to agonists in sensitized and challenged animals, clearly suggesting a role for this cell type in this altered functional state. Moreover, introduction of antibody against Major Basic Protein into the airways also prevents the development of BHR in similar model. BHR can also be suppressed by the use of FK506, an immunosuppressor that reduces in almost 100% the infiltration of eosinophils into the bronchi of allergic animals. These data support the concept that eosinophil is the most important pro-inflammatory factor in bronchial inflammation associated with allergy.
Resumo:
An electron microscopic study of the vitelline follicles of Metamicrocotyla macracantha (Alexander, 1954) Koratha,1955 showed that they are composed of cells in different stages of development. The immature cells have a large nucleus, nucleolus, cytoplasm with free ribosomes and few mitochondria. The developing vitelline cells present granules which are small in the early stages, increasing with maturity. The mature cells have an extensive granular endoplasmic reticulum and droplets of shell-protein; with maturation, clusters of shell protein and yolk bodies are formed and released in the ciliated vitelline ducts. Vitelline development is continuous and all of the cellular stages involved can be found in each follicle.
Resumo:
Plumbagin is a naturally occurring naphthoquinone isolated from roots of Plumbago scandens. The plant was collected at the Campus of Fundação Oswaldo Cruz, Rio de Janeiro, Brazil. P. scandens is used as a traditional medicine for the treatment of several diseases. The antimicrobial activity of plumbagin was evaluated using the macrodilution method. The compound exhibited relatively specific activity against bacteria and yeast. The minimum inhibitory concentration test showed the growth inhibiton of Staphylococcus aureus at a concentration of 1.56 µg/ml and of Candida albicans at a concentration of 0.78 µg/ml. These results suggest the naphthoquinone plumbagin as a promising antimicrobial agent.
Resumo:
Trypanosoma evansi contains protein kinases capable of phosphorylating endogenous substrates with apparent molecular masses in the range between 20 and 205 kDa. The major phosphopolypeptide band, pp55, was predominantly localized in the particulate fraction. Anti-alpha and anti-beta tubulin monoclonal antibodies recognized pp55 by Western blot analyses, suggesting that this band corresponds to phosphorylated tubulin. Inhibition experiments in the presence of emodin, heparin, and 2,3-bisphosphoglycerate indicated that the parasite tubulin kinase was a casein kinase 2 (CK2)-like activity. GTP, which can be utilized instead of ATP by CK2, stimulated rather than inactivated the phosphorylation of tubulin in the parasite homogenate and particulate fraction. However, GTP inhibited the cytosolic CK2 responsible for phosphorylating soluble tubulin and other soluble substrates. Casein and two selective peptide substrates, P1 (RRKDLHDDEEDEAMSITA) for casein kinase (CK1) and P2 (RRRADDSDDDDD) for CK2, were recognized as substrates in T. evansi. While the enzymes present in the soluble fraction predominantly phosphorylated P1, P2 was preferentially labeled in the particulate fractions. These results demonstrated the existence of CK1-like and CK2-like activities primarily located in the parasite cytosolic and membranous fractions, respectively. Histone II-A and kemptide (LRRASVA) also behaved as suitable substrates, implying the existence of other Ser/Thr kinases in T. evansi. Cyclic AMP only increased the phosphorylation of histone II-A and kemptide in the cytosol, demonstrating the existence of soluble cAMP-dependent protein kinase-like activities in T. evansi. However, no endogenous substrates for this enzyme were identified in this fraction. Further evidences were obtained by using PKI (6-22), a reported inhibitor of the catalytic subunit of mammalian cAMP-dependent protein kinases, which specifically hindered the cAMP-dependent phosphorylation of histone II-A and kemptide in the parasite soluble fraction. Since the sum of the values obtained in the parasite cytosolic and particulate fractions were always higher than the values observed in the total T. evansi lysate, the kinase activities examined here appeared to be inhibited in the original extract.
Resumo:
Complex physalin metabolites present in the capsules of the fruit of Physalis angulata L. have been isolated and submitted to a series of assays of antimicrobial activity against Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 29213, S. aureus ATCC 25923, S. aureus ATCC 6538P, Neisseria gonorrhoeae ATCC 49226, Escherichia coli ATCC 8739; E. coli ATCC 25922, Candida albicans ATCC 10231 applying different methodologies such as: bioautography, dilution broth, dilution agar, and agar diffusion techniques. A mixture of physalins (pool) containing physalins B, D, F, G inhibit S. aureus ATCC 29213, S. aureus ATCC 25923, S. aureus ATCC 6538P, and N. gonorrhoeae ATCC 49226 at a concentration of 200 mg/µl, using agar dilution assays. The mixture was inactive against P. aeruginosa ATCC27853, E. coli ATCC 8739; E. coli ATCC 25922, C. albicans ATCC 10231 when applying bioautography assays. Physalin B (200 µg/ml) by the agar diffusion assay inhibited S. aureus ATCC 6538P by ± 85%; and may be considered responsible for the antimicrobial activity.
Delay in maturation of the submandibular gland in Chagas disease correlates with lower DNA synthesis
Resumo:
It has been demonstrated that the acute phase of Trypanosoma cruzi infection promotes several changes in the oral glands. The present study examined whether T. cruzi modulates the expression of host cell apoptotic or mitotic pathway genes. Rats were infected with T. cruzi then sacrificed after 18, 32, 64 or 97 days, after which the submandibular glands were analyzed by immunohistochemistry. Immunohistochemical analyses using an anti-bromodeoxyuridine antibody showed that, during acute T. cruzi infection, DNA synthesizing cells in rat submandibular glands were lower than in non-infected animals (p < 0.05). However, after 64 days of infection (chronic phase), the number of immunolabeled cells are similar in both groups. However, immunohistochemical analysis of Fas and Bcl-2 expression did not find any difference between infected and non-infected animals in both the acute and chronic stages. These findings suggest that the delay in ductal maturation observed at the acute phase of Chagas disease is correlated with lower expression of DNA synthesis genes, but not apoptotic genes.
Resumo:
Paracoccidioides brasiliensis, a thermal dimorphic fungal pathogen, produces a melanin-like pigment in vitro and in vivo. We investigated the involvement of carbohydrates and monoclonal antibody to CD18, on phagocytosis inhibition, involving macrophage receptors and the resistance of melanized fungal cells to chemically generated nitric oxide (NO), reactive oxygen species (ROS), hypochlorite and H2O2. Our results demonstrate that melanized yeast cells were more resistant than nonmelanized yeast cells to chemically generated NO, ROS, hypochlorite and H2O2, in vitro. Phagocytosis of melanized yeast cells was virtually abolished when mannan, N-acetyl glucosamine and anti-CD18 antibody were added together in this system. Intratracheal infection of BALB/c mice, with melanized yeast cells, resulted in higher lung colony forming units, when compared to nonmelanized yeast cells. Therefore, melanin is a virulence factor of P. brasiliensis.
Resumo:
E-2-chloro-8-methyl-3-[(4'-methoxy-1'-indanoyl)-2'-methyliden]-quinoline (IQ) is a new quinoline derivative which has been reported as a haemoglobin degradation and ß-haematin formation inhibitor. The haemoglobin proteolysis induced by Plasmodium parasites represents a source of amino acids and haeme, leading to oxidative stress in infected cells. In this paper, we evaluated oxidative status in Plasmodium berghei-infected erythrocytes in the presence of IQ using chloroquine (CQ) as a control. After haemolysis, superoxide dismutase (SOD), catalase, glutathione cycle and NADPH + H+-dependent dehydrogenase enzyme activities were investigated. Lipid peroxidation was also assayed to evaluate lipid damage. The results showed that the overall activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were significantly diminished by IQ (by 53.5% and 100%, respectively). Glutathione peroxidase activity was also lowered (31%) in conjunction with a higher GSSG/GSH ratio. As a compensatory response, overall SOD activity increased and lipid peroxidation decreased, protecting the cells from the haemolysis caused by the infection. CQ shared most of the effects showed by IQ; however it was able to inhibit the activity of isocitrate dehydrogenase and glutathione-S-transferase. In conclusion, IQ could be a candidate for further studies in malaria research interfering with the oxidative status in Plasmodium berghei infection.
Resumo:
Mycobacterium fortuitum is a rapidly growing nontuberculous Mycobacterium that can cause a range of diseases in humans. Complications from M. fortuitum infection have been associated with numerous surgical procedures. A protective immune response against pathogenic mycobacterial infections is dependent on the granuloma formation. Within the granuloma, the macrophage effector response can inhibit bacterial replication and mediate the intracellular killing of bacteria. The granulomatous responses of BALB/c mice to rapidly and slowly growing mycobacteria were assessed in vivo and the bacterial loads in spleens and livers from M. fortuitum and Mycobacterium intracellulare-infected mice, as well as the number and size of granulomas in liver sections, were quantified. Bacterial loads were found to be approximately two times lower in M. fortuitum-infected mice than in M. intracellulare-infected mice and M. fortuitum-infected mice presented fewer granulomas compared to M. intracellulare-infected mice. These granulomas were characterized by the presence of Mac-1+ and CD4+ cells. Additionally, IFN-γmRNA expression was higher in the livers of M. fortuitum-infected mice than in those of M. intracellulare-infected mice. These data clearly show that mice are more capable of controlling an infection with M. fortuitum than M. intracellulare. This capacity is likely related to distinct granuloma formations in mice infected with M. fortuitum but not with M. intracellulare.
Resumo:
The plastron theory was tested in adults of Neochetina eichhorniae Warner, 1970, through the analysis of the structure that coats these insects' integument and also through submersion laboratorial experiments. The tegument processes were recognized in three types: agglutinated scales with large perforations, plumose scales of varied sizes and shapes, and hairs. The experiments were carried out on 264 adult individuals which were kept submerged at different time intervals (n = 11) and in two types of treatment, natural non-aerated water and previously boiled water, with four repetitions for each treatment. The tests showed a maximum mortality after 24 hours of immersion in the previously boiled water treatment. The survival of the adults was negative and significantly correlated with the types of treatment employed and within the different time intervals. The values of oxygen dissolved in water (mg/l) differed significantly within the types of treatment employed. They were positively correlated with the survival of the adults in the two types of treatment, although more markedly in the treatment with previously boiled water. The mortality of adults after 24 hours of submersion in the treatment with previously boiled water may be associated with the physical-chemical conditions of the non-tested water in this study, such as low surface tension and concentration of solutes. These results suggest plastron functionality in the adults of this species.
Resumo:
Energetic cost of digging behavior in workers of the leaf-cutting ant Atta sexdens (Fabricius). During nest excavation, leaf-cutting ant workers undergo reduction in their body reserve, particularly carbohydrates. In order to estimate the energetic cost of digging, groups of 30 workers of the leaf-cutting ant Atta sexdens were sealed in a hermetic chamber for 24, 48 and 72 hours, with and without soil for digging, and had the CO2 concentration measured using respirometric chambers as well as volume of soil excavated (g). As expected, the worker groups that carried out soil excavation expelled more carbon dioxide than the groups that did not excavate. Therefore, a worker with body mass of 9.65 ± 1.50 mg dug in average 0.85 ± 0.27 g of soil for 24 hours, consuming ca. 0.58 ± 0.23 J. In this study, we calculate that the energetic cost of excavation per worker per day in the experimental set-up was ca. 0.58 J.
Resumo:
Prey identification in nests of the potter wasp Hypodynerus andeus (Packard) (Hymenoptera, Vespidae, Eumeninae) using DNA barcodes. Geometrid larvae are the only prey known for larvae of the Neotropical potter wasp Hypodynerus andeus (Packard, 1869) (Hymenoptera, Vespidae, Eumeninae) in the coastal valleys of the northern Chilean Atacama Desert. A fragment of the mitochondrial gene cytochrome oxidase c subunit 1 was amplified from geometrid larvae collected from cells of H. andeus in the Azapa Valley, Arica Province, and used to provide taxonomic identifications. Two species, Iridopsis hausmanni Vargas, 2007 and Macaria mirthae Vargas, Parra & Hausmann, 2005 were identified, while three others could be identified only at higher taxonomic levels, because the barcode reference library of geometrid moths is still incomplete for northern Chile.
Resumo:
The reaction of nitrogen compounds with ninhydrin can be used as an indicator of cytoplasmic materials released from microbial cells killed by fumigation. Total-N, ninhydrin-reactive-N (NR-N), ammonium-N (A-N), and α-amino-N in the microbial biomass of soils from the State of Rio Grande do Sul, Brazil, were determined, in 1996, in 0.5 mol L-1 K2SO4 extracts of fumigated and non-fumigated soils. Total-N varied from 20.3 to 104.4 mg kg-1 and the ninhydrin-reactive-N corresponded, in average, to 27% of this. The ninhydrin-reactive-N was made up of 67% ammonium-N and 33% aminoacids with the amino group at the α-carbon position. It was concluded that colorimetric analysis of NR-N and A-N may be used as a direct measure of microbial N in soil. This simple and rapid procedure is adequate for routine analyses.
Resumo:
The deleterious effects of both Mn deficiency and excess on the development of plants have been evaluated with regard to aspects of shoot anatomy, ultrastructure and biochemistry, focusing mainly on the manifestation of visual symptoms. However, there is little information in the literature on changes in the root system in response to Mn supply. The objective of this study was to evaluate the effects of Mn doses (0.5, 2.0 and 200.0 μmol L-1) in a nutrient solution on the anatomy of leaves and roots of the Glycine max (L.) cultivars Santa Rosa, IAC-15 and IAC-Foscarin 31. Visual deficiency symptoms were first observed in Santa Rosa and IAC-15, which were also the only cultivars where Mn-toxicity symptoms were observed. Only in IAC-15, a high Mn supply led to root diameter thickening, but without alteration in cells of the bark, epidermis, exodermis and endodermis. The degree of disorganization of the xylem vessels, in particular the metaxylem, differed in the cultivars. Quantity and shape of the palisade parenchyma cells were influenced by both Mn deficiency and toxicity. A reduction in the number of chloroplasts was observed in the three Mn-deficient genotypes. The anatomical alterations in IAC-15 due to nutritional stress were greater, as expressed in extensive root cell cytoplasm disorganization and increased vacuolation at high Mn doses. The degree of changes in the anatomical and ultrastructural organization of roots and leaves of the soybean genotypes studied differed, suggesting the existence of tolerance mechanisms to different intensities of Mn deficiency or excess.