480 resultados para Amazon - Forest
Resumo:
This study analyzed the influence of forest structural components on the occurence, size and density of groups of Bare-face Tamarin (Saguinus bicolor) - the most threatened species in the Amazon - and produced the first map of distribution of groups in large-scale spatial within the area of continuous forest. Population censuses were conducted between November 2002 and July 2003, covering 6400 hectares in the Ducke Reserve, Manaus-AM, Brazil. Groups of S. bicolor were recorded 41 times accordingly distributed in the environments: plateau (20); slopes (12); and lowlands (09). The mean group size was 4.8 indiv./group, and ranged from 2 to 11 individuals. In the sites where the groups were recorded, and in an equivalent number of sites where no tamarins were found located at least 500 m from those where they had been recorded, we placed 50 m x 50 m plots to record the following forest structural components: abundance of trees; abundance of lianas; abundance of fruiting trees and lianas; abundance of snags; abundance of logs; percentage of canopy opening; leaf litter depth; and altitude. Bare-face Tamarin more often uses areas with lower abundance of forest logs, smaller canopy opening and with higher abundance of snags, areas in the forest with smaller canopy opening present higher density of S. bicolor groups. Apparently this species does not use the forest in a random way, and may select areas for its daily activities depending on the micro-environmental heterogeneity produced by the forest structural components.
Resumo:
With this work, the authors wish to show some of the alterations in the pattern of relations between society and nature, which have taken place throughout the 20th century in the Parauapebas and Itacaiúnas river valleys, as well as in parts of the Tocantins River valley, in southeastern Pará. This is accomplished through descriptions based on Coudreau's first-hand accounts (1889), transcribed in "Voyage a Itaboca et a L'Itacayuna", published in 1897, which depicts an area almost totally covered by forest. This is followed by a counter view made possible through the LandSat 5 satellite sensors, with images of those valleys in 2001, showing the consequences of society transformations and pressure on natural resources, and above all the dramatic decrease in the size of the forest, reduced to 52 percent of the 63,000 square kilometers analyzed herein.
Resumo:
In this work the infestation with I. luciae on Didelphimorphia and Rodentia in different environments of Peruvian Amazon was studied. Didelphimorphia was represented by the family Didelphidae. Specimens belonging to Caluromys lanatus, Didelphis marsupialis, Marmosops sp.2, Metachirus nudicaudatus, Philander andersoni and Philander opossum were infested with adults I. luciae and one Micoureus sp. was infested with larvae. In Rodentia, the infestation with I. luciae nymphs was restricted to Hylaeamys perenensis, Hylaeamys yunganus and Oligoryzomys microtis, while one Oecomys bicolor (all Cricetidae) was infested with larvae of this species. The few larvae were found on rodents captured in primary forest. The only significant difference (P < 0.05) in prevalence of adult ticks on Didelphimorphia was between P. andersoni and M. nudicaudatus (chi-square distribution). Adult tick distribution was significant different in P. andersoni in comparison with M. nudicaudatus, P. opossum and D. marsupialis (Kruskal-Wallis test). No significant effect of month or environment was detected in relation to adult tick infestation on Didelphimorphia. The prevalence of nymphal infestation as well as tick distribution showed that H. perenensis and H. yunganus were significantly more prone to be infested with nymphs of I. luciae than O. microtis. Prevalence of nymph infestation was higher in primary and secondary forest than rural areas while abundance was higher in secondary forest when compared with rural areas (P < 0.05). Kruskal-Wallis test showed differences (P < 0.05) for nymphal infestation during December in relation to January, March, April and June. The natural cycle of I. luciae appeared to be continuous, bound to adult tick infestation on Philander and nymphal infestation on Hylaeamys in forested environs.
Resumo:
Construction of hydroelectric dams in tropical regions has been contributing significantly to forest fragmentation. Alterations at edges of forest fragments impact plant communities that suffer increases in tree damage and dead, and decreases in seedling recruitment. This study aimed to test the core-area model in a fragmented landscape caused by construction of a hydroelectric power plant in the Brazilian Amazon. We studied variations in forest structure between the margin and interiors of 17 islands of 8-100 hectares in the Tucuruí dam reservoir, in two plots (30 and >100m from the margin) per island. Mean tree density, basal area, seedling density and forest cover did not significantly differ between marginal and interior island plots. Also, no significant differences were found in liana density, dead tree or damage for margin and interior plots. The peculiar topographic conditions associated with the matrix habitat and shapes of the island seem to extend edge effects to the islands' centers independently of the island size, giving the interior similar physical microclimatic conditions as at the edges. We propose a protocol for assessing the ecological impacts of edge effects in fragments of natural habitat surrounded by induced (artificial) edges. The protocol involves three steps: (1) identification of focal taxa of particular conservation or management interest, (2) measurement of an "edge function" that describes the response of these taxa to induced edges, and (3) use of a "Core-Area Model" to extrapolate edge function parameters to existing or novel situations.
Resumo:
Aniba canelilla (H.B.K.) Mez. is a tree species from Amazon that produces essential oil. The oil extraction from its leaves and stems can be an alternative way to avoid the tree cutting for production of essential oil. The aim of this study was to analyse factors that may influence the essential oil production and the biomass of resprouts after pruning the leaves and stems of A. canelilla trees. The tree crowns were pruned in the wet season and after nine months the leaves and stems of the remaining crown and the resprouts were collected, in the dry season. The results showed that the essential oil yield and chemical composition differed among the stems, leaves and resprouts. The stems' essential oil production differed between the seasons and had a higher production in the resprouting stems than the old stems of the remaining crown. The production of essential oil and leaf biomass of resprouts were differently related to the canopy openness, indicating that light increases the production of the essential oil and decreases the biomass of resprouting leaves. This study revealed that plant organs differ in their essential oil production and that the canopy openness must be taken into account when pruning the A. canelilla tree crown in order to achieve higher oil productivity.
Resumo:
In this study we present a new record of a plant-animal interaction: the mutualistic relationship between the specialist plant-ant Myrcidris epicharis Ward, 1990 (Pseudomyrmecinae) and its myrmecophyte host Myrcia madida McVaugh (Myrtaceae). We observed more than 50 individuals of M. madida occupied by M. epicharis in islands and margins of the Juruena River, in Cotriguaçu, Mato Grosso, Brazil (Meridional Amazon). We discuss a possible distribution of this symbiotic interaction throughout all the riparian forest of the Amazon River basin and its consequence to coevolution of the system.
Resumo:
Coupled carbon/climate models are predicting changes in Amazon carbon and water cycles for the near future, with conversion of forest into savanna-like vegetation. However, empirical data to support these models are still scarce for Amazon. Facing this scenario, we investigated whether conservation status and changes in rainfall regime have influenced the forest-savanna mosaic over 20 years, from 1986 to 2006, in a transitional area in Northern Amazonia. By applying a spectral linear mixture model to a Landsat-5-TM time series, we identified protected savanna enclaves within a strictly protected nature reserve (Maracá Ecological Station - MES) and non-protected forest islands at its outskirts and compared their areas among 1986/1994/2006. The protected savanna enclaves decreased 26% in the 20-years period at an average rate of 0.131 ha year-1, with a greater reduction rate observed during times of higher precipitation, whereas the non-protected forest islands remained stable throughout the period of study, balancing the encroachment of forests into the savanna during humid periods and savannization during reduced rainfall periods. Thus, keeping favorable climate conditions, the MES conservation status would continue to favor the forest encroachment upon savanna, while the non-protected outskirt areas would remain resilient to disturbance regimes. However, if the increases in the frequency of dry periods predicted by climate models for this region are confirmed, future changes in extension and directions of forest limits will be affected, disrupting ecological services as carbon storage and the maintenance of local biodiversity.
Resumo:
Observational and experimental studies have shown that increased concealment of bird nests reduces nest predation rates. The objective of the present study was to evaluate differences in predation rates between two experimental manipulations of artificial ground nests (i.e., clearing an area around the artificial nest or leaving it as natural as possible), and test whether environmental variables also affected nest predation in an undisturbed area of Amazonian forest in eastern Brazil. A generalized linear model was used to examine the influence of five variables (manipulation type, perpendicular distance from the main trail, total basal area of trees surrounding the nest site, understorey density, and liana quantity) on nest predation rates. Model results, showed that manipulation type was the only variable that significantly affected nest predation rates. Thus, to avoid systematic biases, the influence of nest site manipulation must be taken into consideration when conducting experiments with artificial nests.
Resumo:
Species distribution modeling has relevant implications for the studies of biodiversity, decision making about conservation and knowledge about ecological requirements of the species. The aim of this study was to evaluate if the use of forest inventories can improve the estimation of occurrence probability, identify the limits of the potential distribution and habitat preference of a group of timber tree species. The environmental predictor variables were: elevation, slope, aspect, normalized difference vegetation index (NDVI) and height above the nearest drainage (HAND). To estimate the distribution of species we used the maximum entropy method (Maxent). In comparison with a random distribution, using topographic variables and vegetation index as features, the Maxent method predicted with an average accuracy of 86% the geographical distribution of studied species. The altitude and NDVI were the most important variables. There were limitations to the interpolation of the models for non-sampled locations and that are outside of the elevation gradient associated with the occurrence data in approximately 7% of the basin area. Ceiba pentandra (samaúma), Castilla ulei (caucho) and Hura crepitans (assacu) is more likely to occur in nearby water course areas. Clarisia racemosa (guariúba), Amburana acreana (cerejeira), Aspidosperma macrocarpon (pereiro), Apuleia leiocarpa (cumaru cetim), Aspidosperma parvifolium (amarelão) and Astronium lecointei (aroeira) can also occur in upland forest and well drained soils. This modeling approach has potential for application on other tropical species still less studied, especially those that are under pressure from logging.
Resumo:
The effectiveness of ecological researches on small mammals strongly depends on trapping techniques to survey communities and populations accurately. The main goal of this study was to assess the efficiency of three types of traps (Sherman, Tomahawk and Pitfall) to capture non-volant small mammals. We installed traps in 22 forest fragments in the southern Brazilian Amazonia. We captured 873 individuals belonging to 21 species; most of the individuals (N = 369) and species (N = 19) were trapped using Pitfalls, followed by Shermans (N = 271 individuals; N = 15 species) and Tomahawks (N = 233 individuals; N = 15 species). Pitfalls trapped a richer community subset of small mammals than the two other types of traps, and a more abundant community subset than Tomahawks. Proechimys sp. was the most abundant species trapped (N = 125) and Tomahawk was the most efficient type of trap to capture this species (N = 97 individuals). Neacomys spinosus and Marmosops bishopi were more trapped in Pitfalls (N = 92 and 100 individuals, respectively) than Shermans and Tomahawks. Monodelphis glirina was more trapped in Shermans and Pitfalls than Tomahawks. Species composition trapped using the three types of traps were distinct. Pitfalls captured a more distinct subset of the small mammal community than the two other live traps. We recommend the association of the three types of traps to reach a more comprehensive sampling of the community of small mammals. Thus, as stated by previous studies, we also recommend the complementary use of Shermans, Tomahawks and Pitfalls to account for a thorough sampling of the whole small mammal community in researches conducted in the tropical forests of Amazonia.
Resumo:
Trophic relationships in fish communities are affected by the availability of resources, which in turn is affected by spatial and temporal variations throughout the year. The aims of this study were to characterize the diet of A. tetramerus in a streamlet in the north of Brazil and compare its composition in different hydrological seasons (wet and dry seasons). Collections were performed every two months from October 2011 to September 2012 with the aid of seine nets, hand net and fishing traps in the streamlet located in the Machado River drainage basin in the Rondônia state. Most of the specimens collected were quite small (< 40 mm) and had empty stomachs. Our results showed that A. tetramerus feeds on a wide variety of items of plant origin, such as algae, seeds and leaves, as well as items of animal origin, including bryozoans, crustaceans, fish scales, terrestrial insects and detritus. The data also indicated higher consumption of aquatic insects than other food items, suggesting a primarily insect-based diet. Items of plant and allochthonous origin were consumed more in the wet season than in the dry season, but there were no seasonal differences in the consumption of animal and autochthonous items.
Resumo:
ABSTRACT Maize plants can establish beneficial associations with plant growth-promoting bacteria. However, few studies have been conducted on the characterization and inoculation of these bacteria in the Amazon region. This study aimed to characterize endophytic bacteria isolated from maize in the Amazon region and to assess their capacity to promote plant growth. Fifty-five bacterial isolates were obtained from maize grown in two types of ecosystems, i.e., a cerrado (savanna) and a forest area. The isolates were characterized by the presence of the nifH gene, their ability to synthesize indole-3-acetic acid (IAA) and solubilize calcium phosphate (CaHPO4), and 16S rRNA partial gene sequencing. Twenty-four bacteria contained the nifH gene, of which seven were isolated from maize plants cultivated in a cerrado area and seventeen from a forest area. Fourteen samples showed the capacity to synthesize IAA and only four solubilized calcium phosphate. The following genera were found among these isolates: Pseudomonas; Acinetobacter; Enterobacter; Pantoea; Burkholderia and Bacillus. In addition, eight isolates with plant growth-promoting capacity were selected for a glasshouse experiment involving the inoculation of two maize genotypes (a hybrid and a variety) grown in pots containing soil. Inoculation promoted the development of the maize plants but no significant interaction between maize cultivar and bacterial inoculation was found. A high diversity of endophytic bacteria is present in the Amazon region and these bacteria have potential to promote the development of maize plants.
Resumo:
ABSTRACT The analysis of changes in species composition and vegetation structure in chronosequences improves knowledge on the regeneration patterns following land abandonment in the Amazon. Here, the objective was to perform floristic-structural analysis in mature forests (with/without timber exploitation) and secondary successions (initial, intermediate and advanced vegetation regrowth) in the Tapajós region. The regrowth age and plot locations were determined using Landsat-5/Thematic Mapper images (1984-2012). For floristic analysis, we determined the sample sufficiency and the Shannon-Weaver (H'), Pielou evenness (J), Value of Importance (VI) and Fisher's alpha (α) indices. We applied the Non-metric Multidimensional Scaling (NMDS) for similarity ordination. For structural analysis, the diameter at the breast height (DBH), total tree height (Ht), basal area (BA) and the aboveground biomass (AGB) were obtained. We inspected the differences in floristic-structural attributes using Tukey and Kolmogorov-Smirnov tests. The results showed an increase in the H', J and α indices from initial regrowth to mature forests of the order of 47%, 33% and 91%, respectively. The advanced regrowth had more species in common with the intermediate stage than with the mature forest. Statistically significant differences between initial and intermediate stages (p<0.05) were observed for DBH, BA and Ht. The recovery of carbon stocks showed an AGB variation from 14.97 t ha-1 (initial regrowth) to 321.47 t ha-1 (mature forests). In addition to AGB, Ht was also important to discriminate the typologies.
Resumo:
ABSTRACT The spatial distribution of forest biomass in the Amazon is heterogeneous with a temporal and spatial variation, especially in relation to the different vegetation types of this biome. Biomass estimated in this region varies significantly depending on the applied approach and the data set used for modeling it. In this context, this study aimed to evaluate three different geostatistical techniques to estimate the spatial distribution of aboveground biomass (AGB). The selected techniques were: 1) ordinary least-squares regression (OLS), 2) geographically weighted regression (GWR) and, 3) geographically weighted regression - kriging (GWR-K). These techniques were applied to the same field dataset, using the same environmental variables derived from cartographic information and high-resolution remote sensing data (RapidEye). This study was developed in the Amazon rainforest from Sucumbíos - Ecuador. The results of this study showed that the GWR-K, a hybrid technique, provided statistically satisfactory estimates with the lowest prediction error compared to the other two techniques. Furthermore, we observed that 75% of the AGB was explained by the combination of remote sensing data and environmental variables, where the forest types are the most important variable for estimating AGB. It should be noted that while the use of high-resolution images significantly improves the estimation of the spatial distribution of AGB, the processing of this information requires high computational demand.
Resumo:
ABSTRACT: Despite the reduction in deforestation rate in recent years, the impact of global warming by itself can cause changes in vegetation cover. The objective of this work was to investigate the possible changes on the major Brazilian biome, the Amazon Rainforest, under different climate change scenarios. The dynamic vegetation models may simulate changes in vegetation distribution and the biogeochemical processes due to climate change. Initially, the Inland dynamic vegetation model was forced with initial and boundary conditions provided by CFSR and the Eta regional climate model driven by the historical simulation of HadGEM2-ES. These simulations were validated using the Santarém tower data. In the second part, we assess the impact of a future climate change on the Amazon biome by applying the Inland model forced with regional climate change projections. The projections show that some areas of rainforest in the Amazon region are replaced by deciduous forest type and grassland in RCP4.5 scenario and only by grassland in RCP8.5 scenario at the end of this century. The model indicates a reduction of approximately 9% in the area of tropical forest in RCP4.5 scenario and a further reduction in the RCP8.5 scenario of about 50% in the eastern region of Amazon. Although the increase of CO2 atmospheric concentration may favour the growth of trees, the projections of Eta-HadGEM2-ES show increase of temperature and reduction of rainfall in the Amazon region, which caused the forest degradation in these simulations.