102 resultados para Aluminum.
Resumo:
This work describes a process for metal recovery from spent NiMo and CoMo/Al2O3 commercial hydrorefining catalysts. The samples were treated by fusion with potassium hydrogen sulfate (5 h, 600 ºC) with a KHSO4/catalyst mass ratio of 10:1. After fusion the solid was solubilized in water (100 ºC), leaving silicon compounds as residue. Losses of nickel and cobalt may reach 16 wt% of the amount present in the sample, depending on the silicon content. Soluble metals were isolated by selective precipitation techniques (nickel, cobalt, aluminum) or by solvent extraction with methyl-isobutyl ketone (molybdenum) in a hydrochloric acid medium. All metals were recovered in very good yields except for nickel and cobalt in the presence of considerable amounts of silicon. Soluble wastes consist of potassium/sodium sulfates/chlorides. Solid wastes correspond to about 4 wt% of the catalyst and can be discarded in industrial dumps.
Resumo:
This work presents a study on the determination of the optimal experimental conditions for processing spent commercial zeolites in order to recover lanthanide elements and eventually other elements. The process is based on the fusion of the sample with potassium hydrogenosulfate (KHSO4). Three experimental parameters were studied: temperature, reaction time and catalyst/flux mass ratio. After fusion the solid was dissolved in water and the amount of insoluble matter was used to determine the efficiency of the process. The optimized experimental parameters depend on the composition of the sample processed. Under such conditions the insoluble residue corresponds to SiO2. Lanthanide elements and aluminum present in solution were isolated by conventional precipitation techniques; the yields were at least 75 wt%. The final generated wastes correspond to neutral colorless solutions containing alkali chlorides/sulfates and solids that can be disposed of in industrial dumps.
Resumo:
A new white pigment made out of nano-structured non-crystalline aluminum phosphate was recently launched as an industrial product. Pigment opacifying properties are not intrinsic to aluminum phosphate but they arise as the result of a rare hollow particle nano-structure. This is in turn derived from the core-and-shell structure of amorphous aluminum phosphate precipitated under well-defined conditions. The new pigment is a product of the often neglected chemistry of non-crystalline ionic solids that can probably be a rich source of new successful products. The text describes a short account of the R&D activities, from the initial ideas to the present.
Resumo:
The growing concern of environmental surveillance of the quality of hydric resources guides the development of research on management of residues generated in water treatment plants (WTP). Approximately 8.000 WTPs in Brazil operate without a treatment program of the residues, disposing these effluents in the environment. This work evaluated WTP discharges into watercourses by collecting superficial waters, sediments and benthic samples at the town of Registro, São Paulo State, Brazil. Even though superficial waters and benthic samples showed no further contamination, sediment analysis pointed out that aluminum deposits detected near sludge discharges may represent a potential risk to the environment.
Resumo:
The "active mass" (cathode + anode + electrolyte) of spent Li-ion batteries was submitted to one of the following procedures: (a) it was calcined (500 ºC) and submitted to extraction with water to recover lithium salts. The residual solid was treated with sulfuric acid containing hydrogen peroxide. Cobalt was recovered as sulfate; (b) the "active mass" was treated with potassium hydrogen sulfate (500 ºC) and dissolved in water. Cobalt was precipitated together with copper after addition of sodium hydroxide. Lithium was partially recovered as lithium fluoride. Co-processing of other battery components (aluminum and copper foils) affected negatively the behavior of the recovery procedures. Previous segregation of battery components is essential for an efficient and economical processing of the "active mass".
Resumo:
Water treatment uses chlorine for disinfection causing formation of trihalomethanes. In this work, an electrolytic water pre-treatment was studied and applied to the water from a fountainhead. The action against microorganisms was evaluated using cast-iron and aluminum electrodes. Assays were made in laboratory using the electrolytic treatment. After 5 min of electrolysis the heterotrophic bacteria count was below 500 cfu/mL and complete elimination of total and fecal coliforms was observed. Using electrolytic treatment as a pretreatment of conventional tap water treatment is proposed.
Resumo:
This work describes a hydrometallurgical route for processing spent commercial catalysts (CoMo and NiMo/Al2O3). Samples were preoxidized (500 ºC, 5 h) in order to eliminate coke and other volatile species present. The calcined solid was dissolved in concentrated H2SO4 and water (1:1 vol/vol) at 90 ºC; the insoluble matter was separated from the solution. Molybdenum was recovered by solvent extraction using tertiary amines at pH around 1.8. Cobalt (or nickel) was separated by addition of aqueous ammonium oxalate at the above pH. Phosphorus was removed by passing the liquid through a strong anion exchange column. Aluminum was recovered by neutralizing the solution with NaOH. The route presented in this work generates less final aqueous wastes because it is not necessary to use alkaline medium during the metal recovery steps.
Resumo:
The aim of this work is the production and characterization of plasma polymerized acetaldehyde thin films. These films show highly polar species, are hydrophilic, organophilic and easily adsorb organic reactants with CO radicals but only allow permeation of reactants with OH radicals. The good step coverage of films deposited on aluminum trenches is useful for sensor development. Films deposited on hydrophobic substrates may result in a discontinued layer, which allows the use of preconcentration in sample pretreatment. Deposition on microchannels showed the possibility of chromatographic columns and/or retention system production to selectively detect or remove organic compounds from gas flows.
Resumo:
This paper describes the development and validation of an UV-Visible spectrophotometric method for quantitation of genistein and genistin in soy dry extracts, after reaction with aluminum chloride. The method showed to be linear (r²= 0.9999), precise (R.S.D. < 2%), accurate (recovery of 101.56%) and robust. Seven samples of soy dry extracts were analyzed by the spectrophotometric validated method and by RP-HPLC. Genistein concentrations determined by spectrophotometry (0.63% - 16.05%) were slightly higher than values obtained by HPLC analysis (0.40% - 12.79%); however, the results of both methods showed a strong correlation.
Resumo:
Acid mine drainage generated from coal mine showed a pH of 3.2, high concentrations of SO4(2-), Al, Fe, Mn, Zn and minor As, Cd, Co, Cr, Cu, Ni and Pb. The major reduction in the concentration occurred for Al, As, Cr, Fe and Pb after the treatment with CaO. The evolution of these acid waters within the tributary stream showed decreasing concentration for all soluble constituents, except Al. This natural attenuation was controlled by pH (6.4 to 10.8) as a result of concurrent mixing with tributary stream and reaction with local bedrock that contains limestone. Aluminum increasing concentration during this evolution seems to be related to an input of Al-enriched waters due to the leaching of silicate minerals in alkaline conditions.
Resumo:
The main goal of the present study is the analysis of toxic elements in plastic toys commercialized in Brazil. Metals like cadmium, lead, chromium, zinc, and aluminum, along with organic substances, such as phthalates, were identified in different toys by quantitative analytical techniques. Traces of thorium were detected in one of the studied samples. Although the measured radioactive dose was rather low, the presence of such a radioactive contaminant is against to the International Agency of Atomic Energy regulations. Similar toys manufactured in Brazil were analyzed and found to observe the standards defined by the National Institute of Metrology (Inmetro).
Resumo:
The present work aimed to characterize an aluminum industry by-product in natura (L.A. nat) and after phosphate and thermal pretreatments; evaluate the adsorption/desorption capacity of Cd and Pb by this L.A. nat form and after the aforementioned pretreatments, comparing them with an in natura iron mining by-product (L.F. nat). The L.A. nat presented a high pH as well as a high Na concentration and also an oxide-rich mineralogy. Pretreatment of the by-product had no significant effect upon Cd and Pd adsorption/desorption. The L.A. nat performed better than the L.F. nat as an Cd and Pb adsorbent.
Resumo:
The determination of the airborne particulate matter (PTS) mass and trace metals concentrations were performed in three sites in Ouro Preto, MG, Brazil. It was evaluated 288 samples. The legal limit of annual geometric average (60 µg m-3) to PTS concentrations didn't exceed, but the legal limit for 24 h (240 µg m-3) did in three measurements. Seven metals (Al, Cr, Cu, Fe, Mn, Ni, Pb) analysed by ICP-AES were quantified in 18 samples. Aluminum and iron showed the highest concentrations, indicating the contribution of the soil and of one aluminum plant. The high nickel concentration is probably due to vehicular emissions and industrial combustion processes.
Resumo:
Basic sodalite was successfully synthesized by hydrothermal method using kaolin waste as source of Aluminum and Silicon. This waste is mainly composed by kaolinite and is produced in large amount by kaolin processing industries for paper coating from the Amazon region. Initially, the waste has been calcined at 700 ºC for 2 h and then reacted with the following solutions: Na2CO3 and mixture of Na2CO3 + NaOH to 150 ºC with autogenous pressure for 24 h. The raw materials and transformed materials were characterized by XRD, FTIR and SEM. In both studied media, well-crystallized, basic sodalite was the only phase synthesized, while in the literature usually a mixture of zeolites is obtained.
Resumo:
Sodium faujasite zeolites with Si/Al ratio of 1.4 and 2.5 were exchanged with methylammonium cations. The influence of framework aluminum and ion exchange degree in their basic properties were evaluated. These properties were assessed in the Knoevenagel catalytic condensation. The sodium ion exchange was restricted to the supercavity and the exchange degree depended on the cation volume and on the Si/Al ratio. The higher catalytic activity is achieved for the zeolite with the lower Si/Al ratio exchanged with the monomethylammonium cation. The best performance of this catalyst is attributed to the higher basicity in combination with elevated micropore volume.